city-generation/Game/Assets/Scripts/Model/Vector2.cs

345 lines
9.9 KiB
C#
Raw Normal View History

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
2015-05-29 16:03:08 +00:00
using System.Xml.Serialization;
namespace TransportGame.Model
{
public struct Vector2
{
/// <summary>
/// Zero vector
/// </summary>
public static readonly Vector2 Zero = new Vector2(0, 0);
/// <summary>
/// Unit vector
/// </summary>
public static readonly Vector2 Unit = new Vector2(1, 0);
/// <summary>
/// Gets the X component
/// </summary>
2015-05-29 16:03:08 +00:00
[XmlAttribute("x")]
public float X { get; set; }
/// <summary>
/// Gets the Y component
/// </summary>
2015-05-29 16:03:08 +00:00
[XmlAttribute("y")]
public float Y { get; set; }
/// <summary>
/// Initializes a vector2
/// </summary>
/// <param name="x">X component</param>
/// <param name="y">Y component</param>
public Vector2(float x, float y)
: this()
{
X = x;
Y = y;
}
/// <summary>
/// Gets the length of the vector
/// </summary>
public float Length
{
get
{
return (float)Math.Sqrt(LengthSq);
}
}
/// <summary>
/// Gets the length of the vector squared
/// </summary>
public float LengthSq
{
get
{
return X * X + Y * Y;
}
}
/// <summary>
/// Gets the normalized vector
/// </summary>
/// <returns>Normalized vector</returns>
public Vector2 Normalized
{
get
{
float len = Length;
return new Vector2(X / len, Y / len);
}
}
/// <summary>
/// Gets the normalized vector raised to second power
/// </summary>
/// <remarks>
/// This is less computationally expensive (no need to calculate square root).
/// </remarks>
/// <returns>Normalized vector</returns>
public Vector2 NormalizedSq
{
get
{
float len2 = LengthSq;
return new Vector2(X * X / len2, Y * Y / len2);
}
}
/// <summary>
/// Rotates vector by given number of radians
/// </summary>
/// <param name="radians"></param>
/// <returns></returns>
public Vector2 Rotate(float radians)
{
float sin = (float)Math.Sin(radians);
float cos = (float)Math.Cos(radians);
return new Vector2(X * cos - Y * sin, X * sin + Y * cos);
}
/// <summary>
/// Rotates vector by given number of degrees
/// </summary>
/// <param name="degrees"></param>
/// <returns></returns>
public Vector2 RotateDeg(float degrees)
{
return Rotate(degrees * (float)Math.PI / 180f);
}
/// <summary>
/// Sum operator
/// </summary>
/// <param name="a">First vector</param>
/// <param name="b">Second vector</param>
/// <returns>Result of addition</returns>
public static Vector2 operator +(Vector2 a, Vector2 b)
{
return new Vector2(a.X + b.X, a.Y + b.Y);
}
/// <summary>
/// Subtract operator
/// </summary>
/// <param name="a">First vector</param>
/// <param name="b">Second vector</param>
/// <returns>Result of subtraction</returns>
public static Vector2 operator -(Vector2 a, Vector2 b)
{
return new Vector2(a.X - b.X, a.Y - b.Y);
}
/// <summary>
/// Negation operator
/// </summary>
/// <param name="a">Vector</param>
/// <returns>Negated vector</returns>
public static Vector2 operator -(Vector2 a)
{
return new Vector2(-a.X, -a.Y);
}
/// <summary>
/// Multiply by constant
/// </summary>
/// <param name="a">Vector</param>
/// <param name="c">Constant</param>
/// <returns>Result</returns>
public static Vector2 operator *(Vector2 a, float c)
{
return new Vector2(a.X * c, a.Y * c);
}
/// <summary>
/// Multiply by constant
/// </summary>
/// <param name="c">Constant</param>
/// <param name="a">Vector</param>
/// <returns>Result</returns>
public static Vector2 operator *(float c, Vector2 a)
{
return new Vector2(a.X * c, a.Y * c);
}
/// <summary>
/// Divide by constant
/// </summary>
/// <param name="a">Vector</param>
/// <param name="c">Constant</param>
/// <returns>Result</returns>
public static Vector2 operator /(Vector2 a, float c)
{
return new Vector2(a.X / c, a.Y / c);
}
/// <summary>
/// Equality operator
/// </summary>
/// <param name="a">First vector</param>
/// <param name="b">Second vector</param>
/// <returns>True if vectors are equal</returns>
public static bool operator ==(Vector2 a, Vector2 b)
{
return a.X == b.X && a.Y == b.Y;
}
/// <summary>
/// Inequality operator
/// </summary>
/// <param name="a">First vector</param>
/// <param name="b">Second vector</param>
/// <returns>True if vectors are not equal</returns>
public static bool operator !=(Vector2 a, Vector2 b)
{
return a.X != b.X || a.Y != b.Y;
}
/// <summary>
/// Calculates dot product of two vectors
/// </summary>
/// <param name="a">First vector</param>
/// <param name="b">Second vector</param>
/// <returns>Dot product</returns>
public static float Dot(Vector2 a, Vector2 b)
{
return a.X * b.X + a.Y * b.Y;
}
/// <summary>
/// Returns the magnitude of the cross product between the two vectors (z considered 0)
/// </summary>
/// <param name="a">First vector</param>
/// <param name="b">Second vector</param>
/// <returns>Magnitude of cross product</returns>
public static float Cross(Vector2 a, Vector2 b)
{
return (a.X * b.Y) - (a.Y * b.X);
}
/// <summary>
/// Tests if two vectors are colliniar
/// </summary>
/// <param name="a">a</param>
/// <param name="b">b</param>
/// <returns>True if vectors are colliniar</returns>
public static bool AreColliniar(Vector2 a, Vector2 b)
{
return Math.Abs(Cross(a, b)) < 1e-12;
}
/// <summary>
/// Gets the vector corresponding with specified angle (in radians)
/// </summary>
/// <param name="rads">Radians</param>
/// <returns>Vector</returns>
public static Vector2 FromRadians(float rads)
{
return new Vector2((float)Math.Cos(rads), (float)Math.Sin(rads));
}
/// <summary>
/// Gets the vector corresponding with specified angle (in degrees)
/// </summary>
/// <param name="degs">Degrees</param>
/// <returns>Vector</returns>
public static Vector2 FromDegrees(float degs)
{
float rads = (degs * (float)Math.PI / 180f);
return FromRadians(rads);
}
public override string ToString()
{
return String.Format("({0}, {1})", X, Y);
}
public override bool Equals(object obj)
{
if (obj is Vector2)
{
Vector2 other = (Vector2)obj;
return X == other.X && Y == other.Y;
}
return false;
}
public override int GetHashCode()
{
return X.GetHashCode() * 7 + Y.GetHashCode();
}
2015-06-13 18:36:32 +00:00
private class LengthComparerImpl : IComparer<Vector2>
{
public int Compare(Vector2 a, Vector2 b)
{
if (a.LengthSq > b.LengthSq)
return 1;
if (a.LengthSq < b.LengthSq)
return -1;
return 0;
}
}
private class TrigonometricComparerImpl : IComparer<Vector2>
{
private int Quad(Vector2 v)
{
if (v.Y >= 0)
{
if (v.X >= 0)
return 0;
return 1;
}
else
{
if (v.X < 0)
return 2;
return 3;
}
}
public int Compare(Vector2 a, Vector2 b)
{
// If vectors are in different quadrants, we can use quadrant number
int qa = Quad(a), qb = Quad(b);
if (qa != qb)
{
return qa - qb;
}
// In same quadrant. Compute cross product which gives us sin(ab)*len(a)*len(b)
// Vectors are in same quadrant, so angle should be less than 90deg
float cross = Cross(a, b);
if (cross < 0) // Angle > 180 degrees => a > b
return 1;
if (cross > 0) // Angle < 180 degrees => a < b
return -1;
// Points are on the same line. Use distance
if (a.LengthSq > b.LengthSq)
return 1;
else if (a.LengthSq < b.LengthSq)
return -1;
// Points are equal
return 0;
}
}
public static IComparer<Vector2> LengthComparer = new LengthComparerImpl();
public static IComparer<Vector2> TrigonomicComparer = new TrigonometricComparerImpl();
}
}