rainmeter-studio/Library/MeterImage.cpp
mapeki 2b960748f1 * MeterImage
+ Added

* MeterBar and MeterRotator
  + Added support for image effects on Bar and Rotator.
2010-10-17 17:51:14 +00:00

683 lines
16 KiB
C++

/*
Copyright (C) 2002 Kimmo Pekkola
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "StdAfx.h"
#include "MeterImage.h"
#include "Measure.h"
#include "Error.h"
#include "Rainmeter.h"
extern CRainmeter* Rainmeter;
using namespace Gdiplus;
#define PI 3.14159265f
// GrayScale Matrix
const Gdiplus::ColorMatrix CMeterImage::c_GreyScaleMatrix = {
0.299f, 0.299f, 0.299f, 0.0f, 0.0f,
0.587f, 0.587f, 0.587f, 0.0f, 0.0f,
0.114f, 0.114f, 0.114f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 1.0f
};
const Gdiplus::ColorMatrix CMeterImage::c_IdentifyMatrix = {
1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 1.0f
};
/*
** CMeterImage
**
** The constructor
**
*/
CMeterImage::CMeterImage(CMeterWindow* meterWindow) : CMeter(meterWindow)
{
m_Bitmap = NULL;
m_BitmapTint = NULL;
m_NeedsReload = false;
m_NeedsTinting = false;
m_NeedsTransform = false;
m_WidthDefined = false;
m_HeightDefined = false;
m_PreserveAspectRatio = false;
m_hBuffer = NULL;
m_Modified.dwHighDateTime = 0;
m_Modified.dwLowDateTime = 0;
m_GreyScale = false;
m_ColorMatrix = c_IdentifyMatrix;
m_Flip = RotateNoneFlipNone;
m_Rotate = 0.0f;
m_ImageWidthString = L"W";
m_ImageWidthString = L"H";
}
/*
** ~CMeterImage
**
** The destructor
**
*/
CMeterImage::~CMeterImage()
{
if(m_Bitmap != NULL) delete m_Bitmap;
if(m_BitmapTint != NULL) delete m_BitmapTint;
if (m_hBuffer)
{
::GlobalFree(m_hBuffer);
}
}
/*
** Initialize
**
** Load the image and get the dimensions of the meter from it.
**
*/
void CMeterImage::Initialize()
{
CMeter::Initialize();
if (!m_DynamicVariables) LoadImage(true);
}
/*
** LoadImage
**
** Loads the image from disk
**
*/
void CMeterImage::LoadImage(bool bLoadAlways)
{
// Load the bitmap if defined
if (!m_ImageName.empty())
{
std::wstring filename = m_ImageName;
// Check extension and if it is missing, add .png
size_t pos = filename.find_last_of(L"\\");
if (pos == std::wstring::npos) pos = 0;
if (std::wstring::npos == filename.find(L'.', pos))
{
filename += L".png";
}
// Read the bitmap to memory so that it's not locked by GDI+
HANDLE fileHandle = CreateFile(filename.c_str(), GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL | FILE_FLAG_SEQUENTIAL_SCAN, NULL);
if (fileHandle != INVALID_HANDLE_VALUE)
{
// Compare the timestamp and filename to check if the file has been changed (don't load if it's not)
FILETIME tmpTime;
GetFileTime(fileHandle, NULL, NULL, &tmpTime);
if (bLoadAlways || CompareFileTime(&tmpTime, &m_Modified) != 0)
{
m_Modified = tmpTime;
DWORD imageSize = GetFileSize(fileHandle, 0);
if (imageSize != -1)
{
if (m_hBuffer)
{
::GlobalFree(m_hBuffer);
}
m_hBuffer = ::GlobalAlloc(GMEM_MOVEABLE, imageSize);
if (m_hBuffer)
{
void* pBuffer = ::GlobalLock(m_hBuffer);
if (pBuffer)
{
DWORD readBytes;
ReadFile(fileHandle, pBuffer, imageSize, &readBytes, NULL);
::GlobalUnlock(m_hBuffer);
IStream* pStream = NULL;
if (::CreateStreamOnHGlobal(m_hBuffer, FALSE, &pStream) == S_OK)
{
if (m_Bitmap) delete m_Bitmap;
if (m_BitmapTint)
{
delete m_BitmapTint;
m_BitmapTint = NULL;
}
m_Bitmap = Bitmap::FromStream(pStream);
if (m_Bitmap)
{
Status status = m_Bitmap->GetLastStatus();
if(Ok != status)
{
DebugLog(L"Unable to create bitmap: %s", filename.c_str());
delete m_Bitmap;
m_Bitmap = NULL;
}
else
{
// Check whether the new image needs tinting (or flipping, rotating)
if (!m_NeedsTinting)
{
if (m_GreyScale || !CompareColorMatrix(m_ColorMatrix, c_IdentifyMatrix))
{
m_NeedsTinting = true;
}
}
if (!m_NeedsTransform)
{
if (m_Flip != RotateNoneFlipNone || m_Rotate != 0.0f)
{
m_NeedsTransform = true;
}
}
}
}
pStream->Release();
}
}
}
else
{
DebugLog(L"Failed to allocate memory: %i bytes", imageSize);
}
}
}
CloseHandle(fileHandle);
}
else
{
DebugLog(L"Unable to load image: %s", filename.c_str());
}
if (m_Bitmap)
{
// We need a copy of the image if has tinting (or flipping, rotating)
if (m_NeedsTinting || m_NeedsTransform)
{
ApplyTint();
m_NeedsTinting = false;
ApplyTransform();
m_NeedsTransform = false;
}
Bitmap* bitmap = (m_BitmapTint) ? m_BitmapTint : m_Bitmap;
// Calculate size of the meter
int imageW = bitmap->GetWidth();
int imageH = bitmap->GetHeight();
if (m_WidthDefined)
{
if (!m_HeightDefined)
{
m_H = (imageW == 0) ? 0 : m_W * imageH / imageW;
}
}
else
{
if (m_HeightDefined)
{
m_W = (imageH == 0) ? 0 : m_H * imageW / imageH;
}
else
{
m_W = imageW;
m_H = imageH;
}
}
}
}
else
{
if (m_Bitmap)
{
delete m_Bitmap;
m_Bitmap = NULL;
}
if (m_BitmapTint)
{
delete m_BitmapTint;
m_BitmapTint = NULL;
}
}
}
/*
** ApplyTint
**
** This will apply the Greyscale matrix and the color tinting.
**
*/
void CMeterImage::ApplyTint()
{
ImageAttributes ImgAttr;
ImgAttr.SetColorMatrix(&m_ColorMatrix, ColorMatrixFlagsDefault, ColorAdjustTypeBitmap);
if (m_BitmapTint) delete m_BitmapTint;
Rect r(0, 0, m_Bitmap->GetWidth(), m_Bitmap->GetHeight());
m_BitmapTint = new Bitmap(r.Width, r.Height, PixelFormat32bppARGB);
Graphics graphics(m_BitmapTint);
if (m_GreyScale)
{
Bitmap* gray = TurnGreyscale();
graphics.DrawImage(gray, r, 0, 0, r.Width, r.Height, UnitPixel, &ImgAttr);
delete gray;
}
else
{
graphics.DrawImage(m_Bitmap, r, 0, 0, r.Width, r.Height, UnitPixel, &ImgAttr);
}
}
/*
** TurnGreyscale
**
** Turns the image greyscale by applying a greyscale color matrix.
** Note that the returned bitmap image must be freed by caller.
**
*/
Bitmap* CMeterImage::TurnGreyscale()
{
ImageAttributes ImgAttr;
ImgAttr.SetColorMatrix(&c_GreyScaleMatrix, ColorMatrixFlagsDefault, ColorAdjustTypeBitmap);
// We need a blank bitmap to paint our greyscale to in case of alpha
Rect r(0, 0, m_Bitmap->GetWidth(), m_Bitmap->GetHeight());
Bitmap* bitmap = new Bitmap(r.Width, r.Height, PixelFormat32bppARGB);
Graphics graphics(bitmap);
graphics.DrawImage(m_Bitmap, r, 0, 0, r.Width, r.Height, UnitPixel, &ImgAttr);
return bitmap;
}
/*
** ApplyTransform
**
** This will apply the flipping and rotating.
**
*/
void CMeterImage::ApplyTransform()
{
if (m_Rotate != 0.0f)
{
Bitmap* original = (m_BitmapTint) ? m_BitmapTint : m_Bitmap;
REAL originalW = (REAL)original->GetWidth();
REAL originalH = (REAL)original->GetHeight();
REAL cos_f = cos(m_Rotate * PI / 180.0f), sin_f = sin(m_Rotate * PI / 180.0f);
REAL transformW = fabs(originalW * cos_f) + fabs(originalH * sin_f);
REAL transformH = fabs(originalW * sin_f) + fabs(originalH * cos_f);
Bitmap* transform = new Bitmap((int)(transformW + 0.5f), (int)(transformH + 0.5f), PixelFormat32bppARGB);
Graphics graphics(transform);
graphics.SetPixelOffsetMode(PixelOffsetModeHighQuality);
REAL cx = transformW / 2.0f;
REAL cy = transformH / 2.0f;
Matrix rotateMatrix;
rotateMatrix.RotateAt(m_Rotate, PointF(cx, cy));
graphics.SetTransform(&rotateMatrix);
if (m_Flip != RotateNoneFlipNone)
{
original->RotateFlip(m_Flip);
}
RectF r(cx - originalW / 2.0f, cy - originalH / 2.0f, originalW, originalH);
graphics.DrawImage(original, r, -0.5f, -0.5f, originalW + 1.0f, originalH + 1.0f, UnitPixel); // Makes the anti-aliased edge
if (m_Flip != RotateNoneFlipNone)
{
original->RotateFlip(RotateNoneFlipNone);
}
if (m_BitmapTint) delete m_BitmapTint;
m_BitmapTint = transform;
}
else if (m_Flip != RotateNoneFlipNone)
{
Bitmap* original = (m_BitmapTint) ? m_BitmapTint : m_Bitmap;
Rect r(0, 0, original->GetWidth(), original->GetHeight());
Bitmap* transform = new Bitmap(r.Width, r.Height, PixelFormat32bppARGB);
Graphics graphics(transform);
original->RotateFlip(m_Flip);
graphics.DrawImage(original, r, 0, 0, r.Width, r.Height, UnitPixel);
original->RotateFlip(RotateNoneFlipNone);
if (m_BitmapTint) delete m_BitmapTint;
m_BitmapTint = transform;
}
}
/*
** ReadConfig
**
** Read the meter-specific configs from the ini-file.
**
*/
void CMeterImage::ReadConfig(const WCHAR* section)
{
// Store the current values so we know if the image needs to be tinted or transformed
bool oldGreyScale = m_GreyScale;
ColorMatrix oldColorMatrix = m_ColorMatrix;
RotateFlipType oldFlip = m_Flip;
REAL oldRotate = m_Rotate;
// Read common configs
CMeter::ReadConfig(section);
CConfigParser& parser = m_MeterWindow->GetParser();
m_Path = parser.ReadString(section, L"Path", L"");
if (!m_Path.empty())
{
WCHAR ch = m_Path[m_Path.length() - 1];
if (ch != L'\\' && ch != L'/')
{
m_Path += L"\\";
}
}
if (!m_Initialized || !m_Measure)
{
std::wstring oldImageName = m_ImageName;
m_ImageName = parser.ReadString(section, L"ImageName", L"");
m_ImageName = m_MeterWindow->MakePathAbsolute(m_Path + m_ImageName);
if (m_DynamicVariables)
{
m_NeedsReload = (oldImageName != m_ImageName);
}
}
m_PreserveAspectRatio = 0!=parser.ReadInt(section, L"PreserveAspectRatio", 0);
if (-1 != (int)parser.ReadFormula(section, m_ImageWidthString.c_str(), -1))
{
m_WidthDefined = true;
}
if (-1 != (int)parser.ReadFormula(section, m_ImageHeightString.c_str(), -1))
{
m_HeightDefined = true;
}
m_GreyScale = 0!=parser.ReadInt(section, L"Greyscale", 0);
Color tint = parser.ReadColor(section, L"ImageTint", Color::White);
int alpha = parser.ReadInt(section, L"ImageAlpha", tint.GetAlpha()); // for backwards compatibility
alpha = min(255, alpha);
alpha = max(0, alpha);
if (alpha != tint.GetAlpha())
{
tint = Color(alpha, tint.GetRed(), tint.GetGreen(), tint.GetBlue());
}
m_ColorMatrix = c_IdentifyMatrix;
// Read in the Color Matrix
// It has to be read in like this because it crashes when reading over 17 floats
// at one time. The parser does it fine, but after putting the returned values
// into the Color Matrix the next time the parser is used it crashes.
std::vector<Gdiplus::REAL> matrix = parser.ReadFloats(section, L"ColorMatrix1");
if (matrix.size() == 5)
{
for (int i = 0; i < 5; ++i)
{
m_ColorMatrix.m[0][i] = matrix[i];
}
}
else
{
m_ColorMatrix.m[0][0] = (REAL)tint.GetRed() / 255.0f;
}
matrix = parser.ReadFloats(section, L"ColorMatrix2");
if (matrix.size() == 5)
{
for(int i = 0; i < 5; ++i)
{
m_ColorMatrix.m[1][i] = matrix[i];
}
}
else
{
m_ColorMatrix.m[1][1] = (REAL)tint.GetGreen() / 255.0f;
}
matrix = parser.ReadFloats(section, L"ColorMatrix3");
if (matrix.size() == 5)
{
for(int i = 0; i < 5; ++i)
{
m_ColorMatrix.m[2][i] = matrix[i];
}
}
else
{
m_ColorMatrix.m[2][2] = (REAL)tint.GetBlue() / 255.0f;
}
matrix = parser.ReadFloats(section, L"ColorMatrix4");
if (matrix.size() == 5)
{
for(int i = 0; i < 5; ++i)
{
m_ColorMatrix.m[3][i] = matrix[i];
}
}
else
{
m_ColorMatrix.m[3][3] = (REAL)tint.GetAlpha() / 255.0f;
}
matrix = parser.ReadFloats(section, L"ColorMatrix5");
if (matrix.size() == 5)
{
for(int i = 0; i < 5; ++i)
{
m_ColorMatrix.m[4][i] = matrix[i];
}
}
m_NeedsTinting = (oldGreyScale != m_GreyScale || !CompareColorMatrix(oldColorMatrix, m_ColorMatrix));
std::wstring flip;
flip = parser.ReadString(section, L"ImageFlip", L"NONE");
if(_wcsicmp(flip.c_str(), L"NONE") == 0)
{
m_Flip = RotateNoneFlipNone;
}
else if(_wcsicmp(flip.c_str(), L"HORIZONTAL") == 0)
{
m_Flip = RotateNoneFlipX;
}
else if(_wcsicmp(flip.c_str(), L"VERTICAL") == 0)
{
m_Flip = RotateNoneFlipY;
}
else if(_wcsicmp(flip.c_str(), L"BOTH") == 0)
{
m_Flip = RotateNoneFlipXY;
}
else
{
throw CError(std::wstring(L"ImageFlip=") + flip + L" is not valid in meter [" + m_Name + L"].", __LINE__, __FILE__);
}
m_Rotate = (REAL)parser.ReadFloat(section, L"ImageRotate", 0.0);
m_NeedsTransform = (oldFlip != m_Flip || oldRotate != m_Rotate);
}
/*
** CompareColorMatrix
**
** Compares the two given color matrices.
**
*/
bool CMeterImage::CompareColorMatrix(const Gdiplus::ColorMatrix& a, const Gdiplus::ColorMatrix& b)
{
for (int i = 0; i < 5; ++i)
{
for (int j = 0; j < 5; ++j)
{
if (a.m[i][j] != b.m[i][j])
{
return false;
}
}
}
return true;
}
/*
** Update
**
** Updates the value(s) from the measures.
**
*/
bool CMeterImage::Update()
{
if (CMeter::Update())
{
if (m_Measure) //read from the measure
{
std::wstring val = m_Measure->GetStringValue(false, 1, 0, false);
if (!val.empty())
{
val = m_MeterWindow->MakePathAbsolute(m_Path + val);
if (val != m_ImageName)
{
m_ImageName = val;
LoadImage(true);
}
else
{
LoadImage(false);
}
}
return true;
}
else if (m_DynamicVariables) //read from the skin
{
LoadImage(m_NeedsReload);
return true;
}
}
return false;
}
/*
** Draw
**
** Draws the meter on the double buffer
**
*/
bool CMeterImage::Draw(Graphics& graphics)
{
if(!CMeter::Draw(graphics)) return false;
if (m_Bitmap != NULL)
{
Bitmap* drawBitmap = (m_BitmapTint) ? m_BitmapTint : m_Bitmap;
// Copy the image over the doublebuffer
int x = GetX();
int y = GetY();
int imageW = drawBitmap->GetWidth();
int imageH = drawBitmap->GetHeight();
int drawW, drawH;
if (m_PreserveAspectRatio)
{
if (imageW == 0 || imageH == 0 || m_W == 0 || m_H == 0) return true;
REAL imageRatio = imageW / (REAL)imageH;
REAL meterRatio = m_W / (REAL)m_H;
if (imageRatio >= meterRatio)
{
drawW = m_W;
drawH = m_W * imageH / imageW;
}
else
{
drawW = m_H * imageW / imageH;
drawH = m_H;
}
// Centering
x += (m_W - drawW) / 2;
y += (m_H - drawH) / 2;
}
else
{
drawW = m_W;
drawH = m_H;
}
Rect r(x, y, drawW, drawH);
graphics.DrawImage(drawBitmap, r, 0, 0, imageW, imageH, UnitPixel);
}
return true;
}
/*
** BindMeasure
**
** Overridden method. The Image meters need not to be bound on anything
**
*/
void CMeterImage::BindMeasure(std::list<CMeasure*>& measures)
{
// It's ok not to bind image meter to anything
if (!m_MeasureName.empty())
{
CMeter::BindMeasure(measures);
}
}