/* Copyright (C) 2002 Kimmo Pekkola This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "StdAfx.h" #include "MeterImage.h" #include "Measure.h" #include "Error.h" #include "Rainmeter.h" extern CRainmeter* Rainmeter; using namespace Gdiplus; #define PI 3.14159265f // GrayScale Matrix const Gdiplus::ColorMatrix CMeterImage::c_GreyScaleMatrix = { 0.299f, 0.299f, 0.299f, 0.0f, 0.0f, 0.587f, 0.587f, 0.587f, 0.0f, 0.0f, 0.114f, 0.114f, 0.114f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; const Gdiplus::ColorMatrix CMeterImage::c_IdentifyMatrix = { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; /* ** CMeterImage ** ** The constructor ** */ CMeterImage::CMeterImage(CMeterWindow* meterWindow) : CMeter(meterWindow) { m_Bitmap = NULL; m_BitmapTint = NULL; m_NeedsReload = false; m_NeedsTinting = false; m_NeedsTransform = false; m_WidthDefined = false; m_HeightDefined = false; m_PreserveAspectRatio = false; m_hBuffer = NULL; m_Modified.dwHighDateTime = 0; m_Modified.dwLowDateTime = 0; m_GreyScale = false; m_ColorMatrix = c_IdentifyMatrix; m_Flip = RotateNoneFlipNone; m_Rotate = 0.0f; m_ImageWidthString = L"W"; m_ImageWidthString = L"H"; } /* ** ~CMeterImage ** ** The destructor ** */ CMeterImage::~CMeterImage() { if(m_Bitmap != NULL) delete m_Bitmap; if(m_BitmapTint != NULL) delete m_BitmapTint; if (m_hBuffer) { ::GlobalFree(m_hBuffer); } } /* ** Initialize ** ** Load the image and get the dimensions of the meter from it. ** */ void CMeterImage::Initialize() { CMeter::Initialize(); if (!m_DynamicVariables) LoadImage(true); } /* ** LoadImage ** ** Loads the image from disk ** */ void CMeterImage::LoadImage(bool bLoadAlways) { // Load the bitmap if defined if (!m_ImageName.empty()) { std::wstring filename = m_ImageName; // Check extension and if it is missing, add .png size_t pos = filename.find_last_of(L"\\"); if (pos == std::wstring::npos) pos = 0; if (std::wstring::npos == filename.find(L'.', pos)) { filename += L".png"; } // Read the bitmap to memory so that it's not locked by GDI+ HANDLE fileHandle = CreateFile(filename.c_str(), GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL | FILE_FLAG_SEQUENTIAL_SCAN, NULL); if (fileHandle != INVALID_HANDLE_VALUE) { // Compare the timestamp and filename to check if the file has been changed (don't load if it's not) FILETIME tmpTime; GetFileTime(fileHandle, NULL, NULL, &tmpTime); if (bLoadAlways || CompareFileTime(&tmpTime, &m_Modified) != 0) { m_Modified = tmpTime; DWORD imageSize = GetFileSize(fileHandle, 0); if (imageSize != -1) { if (m_hBuffer) { ::GlobalFree(m_hBuffer); } m_hBuffer = ::GlobalAlloc(GMEM_MOVEABLE, imageSize); if (m_hBuffer) { void* pBuffer = ::GlobalLock(m_hBuffer); if (pBuffer) { DWORD readBytes; ReadFile(fileHandle, pBuffer, imageSize, &readBytes, NULL); ::GlobalUnlock(m_hBuffer); IStream* pStream = NULL; if (::CreateStreamOnHGlobal(m_hBuffer, FALSE, &pStream) == S_OK) { if (m_Bitmap) delete m_Bitmap; if (m_BitmapTint) { delete m_BitmapTint; m_BitmapTint = NULL; } m_Bitmap = Bitmap::FromStream(pStream); if (m_Bitmap) { Status status = m_Bitmap->GetLastStatus(); if(Ok != status) { DebugLog(L"Unable to create bitmap: %s", filename.c_str()); delete m_Bitmap; m_Bitmap = NULL; } else { // Check whether the new image needs tinting (or flipping, rotating) if (!m_NeedsTinting) { if (m_GreyScale || !CompareColorMatrix(m_ColorMatrix, c_IdentifyMatrix)) { m_NeedsTinting = true; } } if (!m_NeedsTransform) { if (m_Flip != RotateNoneFlipNone || m_Rotate != 0.0f) { m_NeedsTransform = true; } } } } pStream->Release(); } } } else { DebugLog(L"Failed to allocate memory: %i bytes", imageSize); } } } CloseHandle(fileHandle); } else { DebugLog(L"Unable to load image: %s", filename.c_str()); } if (m_Bitmap) { // We need a copy of the image if has tinting (or flipping, rotating) if (m_NeedsTinting || m_NeedsTransform) { ApplyTint(); m_NeedsTinting = false; ApplyTransform(); m_NeedsTransform = false; } Bitmap* bitmap = (m_BitmapTint) ? m_BitmapTint : m_Bitmap; // Calculate size of the meter int imageW = bitmap->GetWidth(); int imageH = bitmap->GetHeight(); if (m_WidthDefined) { if (!m_HeightDefined) { m_H = (imageW == 0) ? 0 : m_W * imageH / imageW; } } else { if (m_HeightDefined) { m_W = (imageH == 0) ? 0 : m_H * imageW / imageH; } else { m_W = imageW; m_H = imageH; } } } } else { if (m_Bitmap) { delete m_Bitmap; m_Bitmap = NULL; } if (m_BitmapTint) { delete m_BitmapTint; m_BitmapTint = NULL; } } } /* ** ApplyTint ** ** This will apply the Greyscale matrix and the color tinting. ** */ void CMeterImage::ApplyTint() { ImageAttributes ImgAttr; ImgAttr.SetColorMatrix(&m_ColorMatrix, ColorMatrixFlagsDefault, ColorAdjustTypeBitmap); if (m_BitmapTint) delete m_BitmapTint; Rect r(0, 0, m_Bitmap->GetWidth(), m_Bitmap->GetHeight()); m_BitmapTint = new Bitmap(r.Width, r.Height, PixelFormat32bppARGB); Graphics graphics(m_BitmapTint); if (m_GreyScale) { Bitmap* gray = TurnGreyscale(); graphics.DrawImage(gray, r, 0, 0, r.Width, r.Height, UnitPixel, &ImgAttr); delete gray; } else { graphics.DrawImage(m_Bitmap, r, 0, 0, r.Width, r.Height, UnitPixel, &ImgAttr); } } /* ** TurnGreyscale ** ** Turns the image greyscale by applying a greyscale color matrix. ** Note that the returned bitmap image must be freed by caller. ** */ Bitmap* CMeterImage::TurnGreyscale() { ImageAttributes ImgAttr; ImgAttr.SetColorMatrix(&c_GreyScaleMatrix, ColorMatrixFlagsDefault, ColorAdjustTypeBitmap); // We need a blank bitmap to paint our greyscale to in case of alpha Rect r(0, 0, m_Bitmap->GetWidth(), m_Bitmap->GetHeight()); Bitmap* bitmap = new Bitmap(r.Width, r.Height, PixelFormat32bppARGB); Graphics graphics(bitmap); graphics.DrawImage(m_Bitmap, r, 0, 0, r.Width, r.Height, UnitPixel, &ImgAttr); return bitmap; } /* ** ApplyTransform ** ** This will apply the flipping and rotating. ** */ void CMeterImage::ApplyTransform() { if (m_Rotate != 0.0f) { Bitmap* original = (m_BitmapTint) ? m_BitmapTint : m_Bitmap; REAL originalW = (REAL)original->GetWidth(); REAL originalH = (REAL)original->GetHeight(); REAL cos_f = cos(m_Rotate * PI / 180.0f), sin_f = sin(m_Rotate * PI / 180.0f); REAL transformW = fabs(originalW * cos_f) + fabs(originalH * sin_f); REAL transformH = fabs(originalW * sin_f) + fabs(originalH * cos_f); Bitmap* transform = new Bitmap((int)(transformW + 0.5f), (int)(transformH + 0.5f), PixelFormat32bppARGB); Graphics graphics(transform); graphics.SetPixelOffsetMode(PixelOffsetModeHighQuality); REAL cx = transformW / 2.0f; REAL cy = transformH / 2.0f; Matrix rotateMatrix; rotateMatrix.RotateAt(m_Rotate, PointF(cx, cy)); graphics.SetTransform(&rotateMatrix); if (m_Flip != RotateNoneFlipNone) { original->RotateFlip(m_Flip); } RectF r(cx - originalW / 2.0f, cy - originalH / 2.0f, originalW, originalH); graphics.DrawImage(original, r, -0.5f, -0.5f, originalW + 1.0f, originalH + 1.0f, UnitPixel); // Makes the anti-aliased edge if (m_Flip != RotateNoneFlipNone) { original->RotateFlip(RotateNoneFlipNone); } if (m_BitmapTint) delete m_BitmapTint; m_BitmapTint = transform; } else if (m_Flip != RotateNoneFlipNone) { Bitmap* original = (m_BitmapTint) ? m_BitmapTint : m_Bitmap; Rect r(0, 0, original->GetWidth(), original->GetHeight()); Bitmap* transform = new Bitmap(r.Width, r.Height, PixelFormat32bppARGB); Graphics graphics(transform); original->RotateFlip(m_Flip); graphics.DrawImage(original, r, 0, 0, r.Width, r.Height, UnitPixel); original->RotateFlip(RotateNoneFlipNone); if (m_BitmapTint) delete m_BitmapTint; m_BitmapTint = transform; } } /* ** ReadConfig ** ** Read the meter-specific configs from the ini-file. ** */ void CMeterImage::ReadConfig(const WCHAR* section) { // Store the current values so we know if the image needs to be tinted or transformed bool oldGreyScale = m_GreyScale; ColorMatrix oldColorMatrix = m_ColorMatrix; RotateFlipType oldFlip = m_Flip; REAL oldRotate = m_Rotate; // Read common configs CMeter::ReadConfig(section); CConfigParser& parser = m_MeterWindow->GetParser(); m_Path = parser.ReadString(section, L"Path", L""); if (!m_Path.empty()) { WCHAR ch = m_Path[m_Path.length() - 1]; if (ch != L'\\' && ch != L'/') { m_Path += L"\\"; } } if (!m_Initialized || !m_Measure) { std::wstring oldImageName = m_ImageName; m_ImageName = parser.ReadString(section, L"ImageName", L""); m_ImageName = m_MeterWindow->MakePathAbsolute(m_Path + m_ImageName); if (m_DynamicVariables) { m_NeedsReload = (oldImageName != m_ImageName); } } m_PreserveAspectRatio = 0!=parser.ReadInt(section, L"PreserveAspectRatio", 0); if (-1 != (int)parser.ReadFormula(section, m_ImageWidthString.c_str(), -1)) { m_WidthDefined = true; } if (-1 != (int)parser.ReadFormula(section, m_ImageHeightString.c_str(), -1)) { m_HeightDefined = true; } m_GreyScale = 0!=parser.ReadInt(section, L"Greyscale", 0); Color tint = parser.ReadColor(section, L"ImageTint", Color::White); int alpha = parser.ReadInt(section, L"ImageAlpha", tint.GetAlpha()); // for backwards compatibility alpha = min(255, alpha); alpha = max(0, alpha); if (alpha != tint.GetAlpha()) { tint = Color(alpha, tint.GetRed(), tint.GetGreen(), tint.GetBlue()); } m_ColorMatrix = c_IdentifyMatrix; // Read in the Color Matrix // It has to be read in like this because it crashes when reading over 17 floats // at one time. The parser does it fine, but after putting the returned values // into the Color Matrix the next time the parser is used it crashes. std::vector matrix = parser.ReadFloats(section, L"ColorMatrix1"); if (matrix.size() == 5) { for (int i = 0; i < 5; ++i) { m_ColorMatrix.m[0][i] = matrix[i]; } } else { m_ColorMatrix.m[0][0] = (REAL)tint.GetRed() / 255.0f; } matrix = parser.ReadFloats(section, L"ColorMatrix2"); if (matrix.size() == 5) { for(int i = 0; i < 5; ++i) { m_ColorMatrix.m[1][i] = matrix[i]; } } else { m_ColorMatrix.m[1][1] = (REAL)tint.GetGreen() / 255.0f; } matrix = parser.ReadFloats(section, L"ColorMatrix3"); if (matrix.size() == 5) { for(int i = 0; i < 5; ++i) { m_ColorMatrix.m[2][i] = matrix[i]; } } else { m_ColorMatrix.m[2][2] = (REAL)tint.GetBlue() / 255.0f; } matrix = parser.ReadFloats(section, L"ColorMatrix4"); if (matrix.size() == 5) { for(int i = 0; i < 5; ++i) { m_ColorMatrix.m[3][i] = matrix[i]; } } else { m_ColorMatrix.m[3][3] = (REAL)tint.GetAlpha() / 255.0f; } matrix = parser.ReadFloats(section, L"ColorMatrix5"); if (matrix.size() == 5) { for(int i = 0; i < 5; ++i) { m_ColorMatrix.m[4][i] = matrix[i]; } } m_NeedsTinting = (oldGreyScale != m_GreyScale || !CompareColorMatrix(oldColorMatrix, m_ColorMatrix)); std::wstring flip; flip = parser.ReadString(section, L"ImageFlip", L"NONE"); if(_wcsicmp(flip.c_str(), L"NONE") == 0) { m_Flip = RotateNoneFlipNone; } else if(_wcsicmp(flip.c_str(), L"HORIZONTAL") == 0) { m_Flip = RotateNoneFlipX; } else if(_wcsicmp(flip.c_str(), L"VERTICAL") == 0) { m_Flip = RotateNoneFlipY; } else if(_wcsicmp(flip.c_str(), L"BOTH") == 0) { m_Flip = RotateNoneFlipXY; } else { throw CError(std::wstring(L"ImageFlip=") + flip + L" is not valid in meter [" + m_Name + L"].", __LINE__, __FILE__); } m_Rotate = (REAL)parser.ReadFloat(section, L"ImageRotate", 0.0); m_NeedsTransform = (oldFlip != m_Flip || oldRotate != m_Rotate); } /* ** CompareColorMatrix ** ** Compares the two given color matrices. ** */ bool CMeterImage::CompareColorMatrix(const Gdiplus::ColorMatrix& a, const Gdiplus::ColorMatrix& b) { for (int i = 0; i < 5; ++i) { for (int j = 0; j < 5; ++j) { if (a.m[i][j] != b.m[i][j]) { return false; } } } return true; } /* ** Update ** ** Updates the value(s) from the measures. ** */ bool CMeterImage::Update() { if (CMeter::Update()) { if (m_Measure) //read from the measure { std::wstring val = m_Measure->GetStringValue(false, 1, 0, false); if (!val.empty()) { val = m_MeterWindow->MakePathAbsolute(m_Path + val); if (val != m_ImageName) { m_ImageName = val; LoadImage(true); } else { LoadImage(false); } } return true; } else if (m_DynamicVariables) //read from the skin { LoadImage(m_NeedsReload); return true; } } return false; } /* ** Draw ** ** Draws the meter on the double buffer ** */ bool CMeterImage::Draw(Graphics& graphics) { if(!CMeter::Draw(graphics)) return false; if (m_Bitmap != NULL) { Bitmap* drawBitmap = (m_BitmapTint) ? m_BitmapTint : m_Bitmap; // Copy the image over the doublebuffer int x = GetX(); int y = GetY(); int imageW = drawBitmap->GetWidth(); int imageH = drawBitmap->GetHeight(); int drawW, drawH; if (m_PreserveAspectRatio) { if (imageW == 0 || imageH == 0 || m_W == 0 || m_H == 0) return true; REAL imageRatio = imageW / (REAL)imageH; REAL meterRatio = m_W / (REAL)m_H; if (imageRatio >= meterRatio) { drawW = m_W; drawH = m_W * imageH / imageW; } else { drawW = m_H * imageW / imageH; drawH = m_H; } // Centering x += (m_W - drawW) / 2; y += (m_H - drawH) / 2; } else { drawW = m_W; drawH = m_H; } Rect r(x, y, drawW, drawH); graphics.DrawImage(drawBitmap, r, 0, 0, imageW, imageH, UnitPixel); } return true; } /* ** BindMeasure ** ** Overridden method. The Image meters need not to be bound on anything ** */ void CMeterImage::BindMeasure(std::list& measures) { // It's ok not to bind image meter to anything if (!m_MeasureName.empty()) { CMeter::BindMeasure(measures); } }