"""Bisection algorithms. These algorithms are taken from Python's standard library, and modified so they take a 'key' parameter (similar to how `sorted` works). """ def bisect_right(a, x, lo=0, hi=None, key=None): """Return the index where to insert item x in list a, assuming a is sorted. The return value i is such that all e in a[:i] have e <= x, and all e in a[i:] have e > x. So if x already appears in the list, a.insert(x) will insert just after the rightmost x already there. Optional args lo (default 0) and hi (default len(a)) bound the slice of a to be searched. """ if key is None: key = lambda x: x if lo < 0: raise ValueError('lo must be non-negative') if hi is None: hi = len(a) while lo < hi: mid = (lo+hi)//2 if key(x) < key(a[mid]): hi = mid else: lo = mid+1 return lo def bisect_left(a, x, lo=0, hi=None, key=None): """Return the index where to insert item x in list a, assuming a is sorted. The return value i is such that all e in a[:i] have e < x, and all e in a[i:] have e >= x. So if x already appears in the list, a.insert(x) will insert just before the leftmost x already there. Optional args lo (default 0) and hi (default len(a)) bound the slice of a to be searched. """ if key is None: key = lambda x: x if lo < 0: raise ValueError('lo must be non-negative') if hi is None: hi = len(a) while lo < hi: mid = (lo+hi)//2 if key(a[mid]) < key(x): lo = mid+1 else: hi = mid return lo # Create aliases bisect = bisect_right def group_by(data, key): """ Groups the given data into a dictionary matching the structure { key : [values] } :param data: Iterable data to be grouped :param key: Key used to group the data :return: A dictionary containing the grouped data """ result = {} for entry in data: entry_key = key(entry) if entry_key not in result: result[entry_key] = [entry] else: result[entry_key].append(entry) return result