rainmeter-studio/Library/TintedImage.cpp

791 lines
20 KiB
C++

/*
Copyright (C) 2010 Kimmo Pekkola, MattKing, spx
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "StdAfx.h"
#include "TintedImage.h"
#include "ConfigParser.h"
#include "System.h"
#include "Error.h"
#include "Litestep.h"
using namespace Gdiplus;
class ImageCachePool
{
public:
static std::wstring CreateKey(const std::wstring& name, ULONGLONG time, DWORD size)
{
std::wstring key;
WCHAR buffer[MAX_PATH];
if (PathCanonicalize(buffer, name.c_str()))
{
key = buffer;
}
else
{
key = name;
}
std::transform(key.begin(), key.end(), key.begin(), ::towlower);
size_t len = _snwprintf_s(buffer, _TRUNCATE, L":%llx:%x", time, size);
key.append(buffer, len);
return key;
}
static Bitmap* GetCache(const std::wstring& key)
{
std::unordered_map<std::wstring, ImageCache*>::const_iterator iter = c_CacheMap.find(key);
if (iter != c_CacheMap.end())
{
return (*iter).second->GetCache();
}
return NULL;
}
static void AddCache(const std::wstring& key, Bitmap* bitmap, HGLOBAL hBuffer)
{
std::unordered_map<std::wstring, ImageCache*>::const_iterator iter = c_CacheMap.find(key);
if (iter != c_CacheMap.end())
{
(*iter).second->AddRef();
//LogWithArgs(LOG_DEBUG, L"* ADD: key=%s, ref=%i", key.c_str(), (*iter).second->GetRef());
}
else
{
c_CacheMap[key] = new ImageCache(bitmap, hBuffer);
//LogWithArgs(LOG_DEBUG, L"* ADD: key=%s, ref=new", key.c_str());
}
}
static void RemoveCache(const std::wstring& key)
{
std::unordered_map<std::wstring, ImageCache*>::const_iterator iter = c_CacheMap.find(key);
if (iter != c_CacheMap.end())
{
ImageCache* cache = (*iter).second;
cache->Release();
//LogWithArgs(LOG_DEBUG, L"* REMOVE: key=%s, ref=%i", key.c_str(), cache->GetRef());
if (cache->IsInvalid())
{
//LogWithArgs(LOG_DEBUG, L"* EMPTY-ERASE: key=%s", key.c_str());
c_CacheMap.erase(iter);
delete cache;
}
}
}
private:
class ImageCache
{
public:
ImageCache(Bitmap* bitmap, HGLOBAL hBuffer) : m_Bitmap(bitmap), m_hBuffer(hBuffer), m_Ref(1) {}
~ImageCache() { Dispose(); }
void AddRef() { ++m_Ref; }
void Release() { if (m_Ref > 0) { --m_Ref; } if (m_Ref == 0) { Dispose(); } }
bool IsInvalid() { return m_Ref == 0; }
//int GetRef() { return m_Ref; }
Bitmap* GetCache() { return m_Bitmap; }
private:
ImageCache() {}
ImageCache(const ImageCache& cache) {}
void Dispose() { delete m_Bitmap; m_Bitmap = NULL; if (m_hBuffer) { ::GlobalFree(m_hBuffer); m_hBuffer = NULL; } }
Bitmap* m_Bitmap;
HGLOBAL m_hBuffer;
int m_Ref;
};
static std::unordered_map<std::wstring, ImageCache*> c_CacheMap;
};
std::unordered_map<std::wstring, ImageCachePool::ImageCache*> ImageCachePool::c_CacheMap;
#define PI (3.14159265f)
#define CONVERT_TO_RADIANS(X) ((X) * (PI / 180.0f))
// GrayScale Matrix
const Gdiplus::ColorMatrix CTintedImage::c_GreyScaleMatrix = {
0.299f, 0.299f, 0.299f, 0.0f, 0.0f,
0.587f, 0.587f, 0.587f, 0.0f, 0.0f,
0.114f, 0.114f, 0.114f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 1.0f
};
const Gdiplus::ColorMatrix CTintedImage::c_IdentityMatrix = {
1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 1.0f
};
CTintedImageHelper_DefineConfigArray(CTintedImage::c_DefaultConfigArray, L"");
/*
** CTintedImage
**
** The constructor.
**
** If disableTransform is true, following configs are ignored:
** - ImageCrop
** - ImageRotate
**
*/
CTintedImage::CTintedImage(const WCHAR* name, const WCHAR** configArray, bool disableTransform) : m_DisableTransform(disableTransform),
m_ConfigName(name ? name : L"Image"),
m_ConfigArray(configArray ? configArray : c_DefaultConfigArray),
m_Bitmap(),
m_BitmapTint(),
m_NeedsCrop(false),
m_NeedsTinting(false),
m_NeedsTransform(false),
m_Crop(-1, -1, -1, -1),
m_CropMode(CROPMODE_TL),
m_GreyScale(false),
m_ColorMatrix(new ColorMatrix(c_IdentityMatrix)),
m_Flip(RotateNoneFlipNone),
m_Rotate()
{
}
/*
** ~CTintedImage
**
** The destructor
**
*/
CTintedImage::~CTintedImage()
{
DisposeImage();
delete m_ColorMatrix;
}
/*
** DisposeImage
**
** Disposes the image buffers.
**
*/
void CTintedImage::DisposeImage()
{
delete m_BitmapTint;
m_BitmapTint = NULL;
m_Bitmap = NULL;
if (!m_CacheKey.empty())
{
ImageCachePool::RemoveCache(m_CacheKey);
m_CacheKey.clear();
}
}
/*
** LoadImageFromFileHandle
**
** Loads the image from file handle
**
*/
Bitmap* CTintedImage::LoadImageFromFileHandle(HANDLE fileHandle, DWORD fileSize, HGLOBAL* phBuffer)
{
HGLOBAL hBuffer = ::GlobalAlloc(GMEM_MOVEABLE, fileSize);
if (hBuffer)
{
void* pBuffer = ::GlobalLock(hBuffer);
if (pBuffer)
{
DWORD readBytes;
ReadFile(fileHandle, pBuffer, fileSize, &readBytes, NULL);
::GlobalUnlock(hBuffer);
IStream* pStream = NULL;
if (::CreateStreamOnHGlobal(hBuffer, FALSE, &pStream) == S_OK)
{
Bitmap* bitmap = Bitmap::FromStream(pStream);
pStream->Release();
if (Ok == bitmap->GetLastStatus())
{
GUID guid;
if (Ok == bitmap->GetRawFormat(&guid) && guid != ImageFormatIcon)
{
////////////////////////////////////////////
// Convert loaded image to faster blittable bitmap (may increase memory usage slightly)
Rect r(0, 0, bitmap->GetWidth(), bitmap->GetHeight());
Bitmap* clone = new Bitmap(r.Width, r.Height, PixelFormat32bppPARGB);
{
Graphics graphics(clone);
graphics.DrawImage(bitmap, r, 0, 0, r.Width, r.Height, UnitPixel);
}
delete bitmap;
bitmap = clone;
::GlobalFree(hBuffer);
hBuffer = NULL;
////////////////////////////////////////////
}
*phBuffer = hBuffer;
return bitmap;
}
delete bitmap;
}
}
::GlobalFree(hBuffer);
}
*phBuffer = NULL;
return NULL;
}
/*
** LoadImage
**
** Loads the image from disk
**
*/
void CTintedImage::LoadImage(const std::wstring& imageName, bool bLoadAlways)
{
// Load the bitmap if defined
if (!imageName.empty())
{
std::wstring filename = imageName;
// Check extension and if it is missing, add .png
size_t pos = filename.rfind(L'\\');
if (filename.find(L'.', (pos == std::wstring::npos) ? 0 : pos + 1) == std::wstring::npos)
{
filename += L".png";
}
// Read the bitmap to memory so that it's not locked by GDI+
DWORD fileSize;
HANDLE fileHandle = CreateFile(filename.c_str(), GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL | FILE_FLAG_SEQUENTIAL_SCAN, NULL);
if (fileHandle != INVALID_HANDLE_VALUE && (fileSize = GetFileSize(fileHandle, NULL)) != INVALID_FILE_SIZE)
{
// Compare the filename/timestamp/filesize to check if the file has been changed (don't load if it's not)
ULONGLONG fileTime;
GetFileTime(fileHandle, NULL, NULL, (LPFILETIME)&fileTime);
std::wstring key = ImageCachePool::CreateKey(filename, fileTime, fileSize);
if (bLoadAlways || wcscmp(key.c_str(), m_CacheKey.c_str()) != 0)
{
DisposeImage();
Bitmap* bitmap = ImageCachePool::GetCache(key);
HGLOBAL hBuffer = NULL;
m_Bitmap = (bitmap) ?
bitmap :
LoadImageFromFileHandle(fileHandle, fileSize, &hBuffer);
if (m_Bitmap)
{
m_CacheKey = key;
ImageCachePool::AddCache(key, m_Bitmap, hBuffer);
// Check whether the new image needs tinting (or cropping, flipping, rotating)
if (!m_NeedsCrop)
{
if (m_Crop.Width >= 0 || m_Crop.Height >= 0)
{
m_NeedsCrop = true;
}
}
if (!m_NeedsTinting)
{
if (m_GreyScale || !CompareColorMatrix(m_ColorMatrix, &c_IdentityMatrix))
{
m_NeedsTinting = true;
}
}
if (!m_NeedsTransform)
{
if (m_Flip != RotateNoneFlipNone || m_Rotate != 0.0f)
{
m_NeedsTransform = true;
}
}
}
else
{
LogWithArgs(LOG_ERROR, L"%s: Unable to load: %s", m_ConfigName.c_str(), filename.c_str());
}
}
CloseHandle(fileHandle);
if (m_Bitmap)
{
// We need a copy of the image if has tinting (or flipping, rotating)
if (m_NeedsCrop || m_NeedsTinting || m_NeedsTransform)
{
delete m_BitmapTint;
m_BitmapTint = NULL;
if (m_Bitmap->GetWidth() > 0 && m_Bitmap->GetHeight() > 0)
{
ApplyCrop();
if (!m_BitmapTint || (m_BitmapTint->GetWidth() > 0 && m_BitmapTint->GetHeight() > 0))
{
ApplyTint();
ApplyTransform();
}
}
m_NeedsCrop = false;
m_NeedsTinting = false;
m_NeedsTransform = false;
}
}
}
else
{
LogWithArgs(LOG_ERROR, L"%s: Unable to open: %s", m_ConfigName.c_str(), filename.c_str());
if (fileHandle != INVALID_HANDLE_VALUE)
{
CloseHandle(fileHandle);
}
DisposeImage();
}
}
else if (IsLoaded())
{
DisposeImage();
}
}
/*
** ApplyCrop
**
** This will apply the cropping.
**
*/
void CTintedImage::ApplyCrop()
{
if (m_Crop.Width >= 0 && m_Crop.Height >= 0)
{
if (m_Crop.Width == 0 || m_Crop.Height == 0)
{
m_BitmapTint = new Bitmap(0, 0, PixelFormat32bppPARGB); // create dummy bitmap
}
else
{
int imageW = m_Bitmap->GetWidth();
int imageH = m_Bitmap->GetHeight();
int x, y;
switch (m_CropMode)
{
case CROPMODE_TL:
default:
x = m_Crop.X;
y = m_Crop.Y;
break;
case CROPMODE_TR:
x = m_Crop.X + imageW;
y = m_Crop.Y;
break;
case CROPMODE_BR:
x = m_Crop.X + imageW;
y = m_Crop.Y + imageH;
break;
case CROPMODE_BL:
x = m_Crop.X;
y = m_Crop.Y + imageH;
break;
case CROPMODE_C:
x = m_Crop.X + (imageW / 2);
y = m_Crop.Y + (imageH / 2);
break;
}
Rect r(0, 0, m_Crop.Width, m_Crop.Height);
m_BitmapTint = new Bitmap(r.Width, r.Height, PixelFormat32bppPARGB);
Graphics graphics(m_BitmapTint);
graphics.DrawImage(m_Bitmap, r, x, y, r.Width, r.Height, UnitPixel);
}
}
}
/*
** ApplyTint
**
** This will apply the Greyscale matrix and the color tinting.
**
*/
void CTintedImage::ApplyTint()
{
bool useColorMatrix = !CompareColorMatrix(m_ColorMatrix, &c_IdentityMatrix);
if (m_GreyScale || useColorMatrix)
{
Bitmap* original = GetImage();
Bitmap* tint;
if (m_GreyScale && !useColorMatrix)
{
tint = TurnGreyscale(original);
}
else
{
ImageAttributes ImgAttr;
ImgAttr.SetColorMatrix(m_ColorMatrix, ColorMatrixFlagsDefault, ColorAdjustTypeBitmap);
Rect r(0, 0, original->GetWidth(), original->GetHeight());
tint = new Bitmap(r.Width, r.Height, PixelFormat32bppPARGB);
Graphics graphics(tint);
if (m_GreyScale)
{
Bitmap* gray = TurnGreyscale(original);
graphics.DrawImage(gray, r, 0, 0, r.Width, r.Height, UnitPixel, &ImgAttr);
delete gray;
}
else
{
graphics.DrawImage(original, r, 0, 0, r.Width, r.Height, UnitPixel, &ImgAttr);
}
}
delete m_BitmapTint;
m_BitmapTint = tint;
}
}
/*
** TurnGreyscale
**
** Turns the image greyscale by applying a greyscale color matrix.
** Note that the returned bitmap image must be freed by caller.
**
*/
Bitmap* CTintedImage::TurnGreyscale(Bitmap* source)
{
ImageAttributes ImgAttr;
ImgAttr.SetColorMatrix(&c_GreyScaleMatrix, ColorMatrixFlagsDefault, ColorAdjustTypeBitmap);
// We need a blank bitmap to paint our greyscale to in case of alpha
Rect r(0, 0, source->GetWidth(), source->GetHeight());
Bitmap* bitmap = new Bitmap(r.Width, r.Height, PixelFormat32bppPARGB);
Graphics graphics(bitmap);
graphics.DrawImage(source, r, 0, 0, r.Width, r.Height, UnitPixel, &ImgAttr);
return bitmap;
}
/*
** ApplyTransform
**
** This will apply the flipping and rotating.
**
*/
void CTintedImage::ApplyTransform()
{
if (m_Rotate != 0.0f)
{
Bitmap* original = GetImage();
REAL originalW = (REAL)original->GetWidth();
REAL originalH = (REAL)original->GetHeight();
REAL cos_f = cos(CONVERT_TO_RADIANS(m_Rotate)), sin_f = sin(CONVERT_TO_RADIANS(m_Rotate));
REAL transformW = fabs(originalW * cos_f) + fabs(originalH * sin_f);
REAL transformH = fabs(originalW * sin_f) + fabs(originalH * cos_f);
Bitmap* transform = new Bitmap((int)(transformW + 0.5f), (int)(transformH + 0.5f), PixelFormat32bppPARGB);
Graphics graphics(transform);
graphics.SetPixelOffsetMode(PixelOffsetModeHighQuality);
REAL cx = transformW / 2.0f;
REAL cy = transformH / 2.0f;
Matrix rotateMatrix;
rotateMatrix.RotateAt(m_Rotate, PointF(cx, cy));
graphics.SetTransform(&rotateMatrix);
if (m_Flip != RotateNoneFlipNone)
{
original->RotateFlip(m_Flip);
}
RectF r(cx - originalW / 2.0f, cy - originalH / 2.0f, originalW, originalH);
graphics.DrawImage(original, r, -0.5f, -0.5f, originalW + 1.0f, originalH + 1.0f, UnitPixel); // Makes the anti-aliased edge
if (m_Flip != RotateNoneFlipNone)
{
original->RotateFlip(m_Flip);
}
delete m_BitmapTint;
m_BitmapTint = transform;
}
else if (m_Flip != RotateNoneFlipNone)
{
Bitmap* original = GetImage();
Rect r(0, 0, original->GetWidth(), original->GetHeight());
Bitmap* transform = new Bitmap(r.Width, r.Height, PixelFormat32bppPARGB);
Graphics graphics(transform);
original->RotateFlip(m_Flip);
graphics.DrawImage(original, r, 0, 0, r.Width, r.Height, UnitPixel);
original->RotateFlip(m_Flip);
delete m_BitmapTint;
m_BitmapTint = transform;
}
}
/*
** ReadConfig
**
** Read the meter-specific configs from the ini-file.
**
*/
void CTintedImage::ReadConfig(CConfigParser& parser, const WCHAR* section)
{
// Store the current values so we know if the image needs to be tinted or transformed
Rect oldCrop = m_Crop;
CROPMODE oldCropMode = m_CropMode;
bool oldGreyScale = m_GreyScale;
ColorMatrix oldColorMatrix = *m_ColorMatrix;
RotateFlipType oldFlip = m_Flip;
REAL oldRotate = m_Rotate;
if (!m_DisableTransform)
{
m_Crop.X = m_Crop.Y = m_Crop.Width = m_Crop.Height = -1;
m_CropMode = CROPMODE_TL;
const std::wstring& crop = parser.ReadString(section, m_ConfigArray[ConfigIndexImageCrop], L"");
if (!crop.empty())
{
if (wcschr(crop.c_str(), L','))
{
WCHAR* parseSz = _wcsdup(crop.c_str());
WCHAR* token;
token = wcstok(parseSz, L",");
if (token)
{
m_Crop.X = _wtoi(token);
token = wcstok(NULL, L",");
if (token)
{
m_Crop.Y = _wtoi(token);
token = wcstok(NULL, L",");
if (token)
{
m_Crop.Width = _wtoi(token);
token = wcstok(NULL, L",");
if (token)
{
m_Crop.Height = _wtoi(token);
token = wcstok(NULL, L",");
if (token)
{
m_CropMode = (CROPMODE)_wtoi(token);
}
}
}
}
}
free(parseSz);
}
if (m_CropMode < CROPMODE_TL || m_CropMode > CROPMODE_C)
{
std::wstring error = m_ConfigArray[ConfigIndexImageCrop];
error += L'=';
error += crop;
error += L" (origin) is not valid in [";
error += section;
error += L']';
throw CError(error);
}
}
}
m_NeedsCrop = (oldCrop.X != m_Crop.X || oldCrop.Y != m_Crop.Y || oldCrop.Width != m_Crop.Width || oldCrop.Height != m_Crop.Height || oldCropMode != m_CropMode);
m_GreyScale = 0!=parser.ReadInt(section, m_ConfigArray[ConfigIndexGreyscale], 0);
Color tint = parser.ReadColor(section, m_ConfigArray[ConfigIndexImageTint], Color::White);
int alpha = parser.ReadInt(section, m_ConfigArray[ConfigIndexImageAlpha], tint.GetAlpha()); // for backwards compatibility
alpha = min(255, alpha);
alpha = max(0, alpha);
*m_ColorMatrix = c_IdentityMatrix;
// Read in the Color Matrix
// It has to be read in like this because it crashes when reading over 17 floats
// at one time. The parser does it fine, but after putting the returned values
// into the Color Matrix the next time the parser is used it crashes.
std::vector<Gdiplus::REAL> matrix1 = parser.ReadFloats(section, m_ConfigArray[ConfigIndexColorMatrix1]);
if (matrix1.size() == 5)
{
for (int i = 0; i < 4; ++i) // The fifth column must be 0.
{
m_ColorMatrix->m[0][i] = matrix1[i];
}
}
else
{
m_ColorMatrix->m[0][0] = (REAL)tint.GetRed() / 255.0f;
}
std::vector<Gdiplus::REAL> matrix2 = parser.ReadFloats(section, m_ConfigArray[ConfigIndexColorMatrix2]);
if (matrix2.size() == 5)
{
for (int i = 0; i < 4; ++i) // The fifth column must be 0.
{
m_ColorMatrix->m[1][i] = matrix2[i];
}
}
else
{
m_ColorMatrix->m[1][1] = (REAL)tint.GetGreen() / 255.0f;
}
std::vector<Gdiplus::REAL> matrix3 = parser.ReadFloats(section, m_ConfigArray[ConfigIndexColorMatrix3]);
if (matrix3.size() == 5)
{
for (int i = 0; i < 4; ++i) // The fifth column must be 0.
{
m_ColorMatrix->m[2][i] = matrix3[i];
}
}
else
{
m_ColorMatrix->m[2][2] = (REAL)tint.GetBlue() / 255.0f;
}
std::vector<Gdiplus::REAL> matrix4 = parser.ReadFloats(section, m_ConfigArray[ConfigIndexColorMatrix4]);
if (matrix4.size() == 5)
{
for (int i = 0; i < 4; ++i) // The fifth column must be 0.
{
m_ColorMatrix->m[3][i] = matrix4[i];
}
}
else
{
m_ColorMatrix->m[3][3] = (REAL)alpha / 255.0f;
}
std::vector<Gdiplus::REAL> matrix5 = parser.ReadFloats(section, m_ConfigArray[ConfigIndexColorMatrix5]);
if (matrix5.size() == 5)
{
for (int i = 0; i < 4; ++i) // The fifth column must be 1.
{
m_ColorMatrix->m[4][i] = matrix5[i];
}
}
m_NeedsTinting = (oldGreyScale != m_GreyScale || !CompareColorMatrix(&oldColorMatrix, m_ColorMatrix));
const WCHAR* flip = parser.ReadString(section, m_ConfigArray[ConfigIndexImageFlip], L"NONE").c_str();
if (_wcsicmp(flip, L"NONE") == 0)
{
m_Flip = RotateNoneFlipNone;
}
else if (_wcsicmp(flip, L"HORIZONTAL") == 0)
{
m_Flip = RotateNoneFlipX;
}
else if (_wcsicmp(flip, L"VERTICAL") == 0)
{
m_Flip = RotateNoneFlipY;
}
else if (_wcsicmp(flip, L"BOTH") == 0)
{
m_Flip = RotateNoneFlipXY;
}
else
{
std::wstring error = m_ConfigArray[ConfigIndexImageFlip];
error += L'=';
error += flip;
error += L" is not valid in [";
error += section;
error += L']';
throw CError(error);
}
if (!m_DisableTransform)
{
m_Rotate = (REAL)parser.ReadFloat(section, m_ConfigArray[ConfigIndexImageRotate], 0.0);
}
m_NeedsTransform = (oldFlip != m_Flip || oldRotate != m_Rotate);
}
/*
** CompareColorMatrix
**
** Compares the two given color matrices.
**
*/
bool CTintedImage::CompareColorMatrix(const Gdiplus::ColorMatrix* a, const Gdiplus::ColorMatrix* b)
{
for (int i = 0; i < 5; ++i)
{
for (int j = 0; j < 4; ++j) // The fifth column is reserved.
{
if (a->m[i][j] != b->m[i][j])
{
return false;
}
}
}
return true;
}