rainmeter-studio/Library/MeterHistogram.cpp
Birunthan Mohanathas e3d92d354c Cosmetics
2012-05-30 21:53:44 +03:00

684 lines
18 KiB
C++

/*
Copyright (C) 2001 Kimmo Pekkola
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "StdAfx.h"
#include "MeterHistogram.h"
#include "Measure.h"
#include "Error.h"
#include "Rainmeter.h"
using namespace Gdiplus;
extern CRainmeter* Rainmeter;
CTintedImageHelper_DefineOptionArray(CMeterHistogram::c_PrimaryOptionArray, L"Primary");
CTintedImageHelper_DefineOptionArray(CMeterHistogram::c_SecondaryOptionArray, L"Secondary");
CTintedImageHelper_DefineOptionArray(CMeterHistogram::c_BothOptionArray, L"Both");
/*
** The constructor
**
*/
CMeterHistogram::CMeterHistogram(CMeterWindow* meterWindow, const WCHAR* name) : CMeter(meterWindow, name),
m_SecondaryMeasure(),
m_PrimaryColor(Color::Green),
m_SecondaryColor(Color::Red),
m_OverlapColor(Color::Yellow),
m_MeterPos(),
m_Autoscale(false),
m_Flip(false),
m_PrimaryImage(L"PrimaryImage", c_PrimaryOptionArray),
m_SecondaryImage(L"SecondaryImage", c_SecondaryOptionArray),
m_OverlapImage(L"BothImage", c_BothOptionArray),
m_PrimaryNeedsReload(false),
m_SecondaryNeedsReload(false),
m_OverlapNeedsReload(false),
m_PrimaryValues(),
m_SecondaryValues(),
m_MaxPrimaryValue(1.0),
m_MinPrimaryValue(),
m_MaxSecondaryValue(1.0),
m_MinSecondaryValue(),
m_SizeChanged(true),
m_GraphStartLeft(false),
m_GraphHorizontalOrientation(false)
{
}
/*
** The destructor
**
*/
CMeterHistogram::~CMeterHistogram()
{
DisposeBuffer();
}
/*
** Disposes the buffers.
**
*/
void CMeterHistogram::DisposeBuffer()
{
// Reset current position
m_MeterPos = 0;
// Delete buffers
delete [] m_PrimaryValues;
m_PrimaryValues = NULL;
delete [] m_SecondaryValues;
m_SecondaryValues = NULL;
}
/*
** Load the images and calculate the dimensions of the meter from them.
** Or create the brushes if solid color histogram is used.
**
*/
void CMeterHistogram::Initialize()
{
CMeter::Initialize();
// A sanity check
if (m_SecondaryMeasure && !m_PrimaryImageName.empty() && (m_OverlapImageName.empty() || m_SecondaryImageName.empty()))
{
Log(LOG_WARNING, L"Histogram: SecondaryImage and BothImage not defined");
m_PrimaryImage.DisposeImage();
m_SecondaryImage.DisposeImage();
m_OverlapImage.DisposeImage();
}
else
{
// Load the bitmaps if defined
if (!m_PrimaryImageName.empty())
{
m_PrimaryImage.LoadImage(m_PrimaryImageName, m_PrimaryNeedsReload);
if (m_PrimaryImage.IsLoaded())
{
int oldW = m_W;
int oldH = m_H;
Bitmap* bitmap = m_PrimaryImage.GetImage();
m_W = bitmap->GetWidth();
m_H = bitmap->GetHeight();
if (oldW != m_W || oldH != m_H)
{
m_SizeChanged = true;
}
}
}
else if (m_PrimaryImage.IsLoaded())
{
m_PrimaryImage.DisposeImage();
}
if (!m_SecondaryImageName.empty())
{
m_SecondaryImage.LoadImage(m_SecondaryImageName, m_SecondaryNeedsReload);
}
else if (m_SecondaryImage.IsLoaded())
{
m_SecondaryImage.DisposeImage();
}
if (!m_OverlapImageName.empty())
{
m_OverlapImage.LoadImage(m_OverlapImageName, m_OverlapNeedsReload);
}
else if (m_OverlapImage.IsLoaded())
{
m_OverlapImage.DisposeImage();
}
}
if ((!m_PrimaryImageName.empty() && !m_PrimaryImage.IsLoaded()) ||
(!m_SecondaryImageName.empty() && !m_SecondaryImage.IsLoaded()) ||
(!m_OverlapImageName.empty() && !m_OverlapImage.IsLoaded()))
{
DisposeBuffer();
m_SizeChanged = false;
}
else if (m_SizeChanged)
{
DisposeBuffer();
// Create buffers for values
if (m_W > 0 || m_H > 0)
{
int maxSize = m_GraphHorizontalOrientation ? m_H : m_W;
m_PrimaryValues = new double[maxSize]();
if (m_SecondaryMeasure)
{
m_SecondaryValues = new double[maxSize]();
}
}
m_SizeChanged = false;
}
}
/*
** Read the meter-specific configs from the ini-file.
**
*/
void CMeterHistogram::ReadOptions(CConfigParser& parser, const WCHAR* section)
{
// Store the current values so we know if the image needs to be updated
std::wstring oldPrimaryImageName = m_PrimaryImageName;
std::wstring oldSecondaryImageName = m_SecondaryImageName;
std::wstring oldBothImageName = m_OverlapImageName;
int oldW = m_W;
int oldH = m_H;
// Read common configs
CMeter::ReadOptions(parser, section);
m_PrimaryColor = parser.ReadColor(section, L"PrimaryColor", Color::Green);
m_SecondaryColor = parser.ReadColor(section, L"SecondaryColor", Color::Red);
m_OverlapColor = parser.ReadColor(section, L"BothColor", Color::Yellow);
if (!m_Initialized && !m_MeasureName.empty())
{
m_SecondaryMeasureName = parser.ReadString(section, L"MeasureName2", L"");
if (m_SecondaryMeasureName.empty())
{
m_SecondaryMeasureName = parser.ReadString(section, L"SecondaryMeasureName", L"");
}
}
m_PrimaryImageName = parser.ReadString(section, L"PrimaryImage", L"");
if (!m_PrimaryImageName.empty())
{
m_MeterWindow->MakePathAbsolute(m_PrimaryImageName);
// Read tinting configs
m_PrimaryImage.ReadOptions(parser, section);
}
else
{
m_PrimaryImage.ClearOptionFlags();
}
m_SecondaryImageName = parser.ReadString(section, L"SecondaryImage", L"");
if (!m_SecondaryImageName.empty())
{
m_MeterWindow->MakePathAbsolute(m_SecondaryImageName);
// Read tinting configs
m_SecondaryImage.ReadOptions(parser, section);
}
else
{
m_SecondaryImage.ClearOptionFlags();
}
m_OverlapImageName = parser.ReadString(section, L"BothImage", L"");
if (!m_OverlapImageName.empty())
{
m_MeterWindow->MakePathAbsolute(m_OverlapImageName);
// Read tinting configs
m_OverlapImage.ReadOptions(parser, section);
}
else
{
m_OverlapImage.ClearOptionFlags();
}
m_Autoscale = 0!=parser.ReadInt(section, L"AutoScale", 0);
m_Flip = 0!=parser.ReadInt(section, L"Flip", 0);
if (m_Initialized)
{
if (m_PrimaryImageName.empty())
{
if (oldW != m_W || oldH != m_H)
{
m_SizeChanged = true;
Initialize(); // Reload the image
}
}
else
{
// Reset to old dimensions
m_W = oldW;
m_H = oldH;
m_PrimaryNeedsReload = (wcscmp(oldPrimaryImageName.c_str(), m_PrimaryImageName.c_str()) != 0);
m_SecondaryNeedsReload = (wcscmp(oldSecondaryImageName.c_str(), m_SecondaryImageName.c_str()) != 0);
m_OverlapNeedsReload = (wcscmp(oldBothImageName.c_str(), m_OverlapImageName.c_str()) != 0);
if (m_PrimaryNeedsReload ||
m_SecondaryNeedsReload ||
m_OverlapNeedsReload ||
m_PrimaryImage.IsOptionsChanged() ||
m_SecondaryImage.IsOptionsChanged() ||
m_OverlapImage.IsOptionsChanged())
{
Initialize(); // Reload the image
}
}
}
const WCHAR* graph = parser.ReadString(section, L"GraphStart", L"RIGHT").c_str();
if (_wcsicmp(graph, L"RIGHT") == 0)
{
m_GraphStartLeft = false;
}
else if (_wcsicmp(graph, L"LEFT") == 0)
{
m_GraphStartLeft = true;
}
else
{
LogWithArgs(LOG_ERROR, L"GraphStart=%s is not valid in [%s]", graph, m_Name.c_str());
}
graph = parser.ReadString(section, L"GraphOrientation", L"VERTICAL").c_str();
if (_wcsicmp(graph, L"VERTICAL") == 0)
{
// Restart graph
if (m_GraphHorizontalOrientation)
{
m_GraphHorizontalOrientation = false;
DisposeBuffer();
// Create buffers for values
if (m_W > 0)
{
m_PrimaryValues = new double[m_W]();
if (m_SecondaryMeasure)
{
m_SecondaryValues = new double[m_W]();
}
}
}
else
{
m_GraphHorizontalOrientation = false;
}
}
else if (_wcsicmp(graph, L"HORIZONTAL") == 0)
{
// Restart graph
if (!m_GraphHorizontalOrientation)
{
m_GraphHorizontalOrientation = true;
DisposeBuffer();
// Create buffers for values
if (m_H > 0)
{
m_PrimaryValues = new double[m_H]();
if (m_SecondaryMeasure)
{
m_SecondaryValues = new double[m_H]();
}
}
}
else
{
m_GraphHorizontalOrientation = true;
}
}
else
{
LogWithArgs(LOG_ERROR, L"GraphOrientation=%s is not valid in [%s]", graph, m_Name.c_str());
}
}
/*
** Updates the value(s) from the measures.
**
*/
bool CMeterHistogram::Update()
{
if (CMeter::Update() && m_Measure && m_PrimaryValues)
{
// Gather values
m_PrimaryValues[m_MeterPos] = m_Measure->GetValue();
if (m_SecondaryMeasure && m_SecondaryValues)
{
m_SecondaryValues[m_MeterPos] = m_SecondaryMeasure->GetValue();
}
++m_MeterPos;
int maxSize = m_GraphHorizontalOrientation ? m_H : m_W;
m_MeterPos %= maxSize;
m_MaxPrimaryValue = m_Measure->GetMaxValue();
m_MinPrimaryValue = m_Measure->GetMinValue();
m_MaxSecondaryValue = 0.0;
m_MinSecondaryValue = 0.0;
if (m_SecondaryMeasure)
{
m_MaxSecondaryValue = m_SecondaryMeasure->GetMaxValue();
m_MinSecondaryValue = m_SecondaryMeasure->GetMinValue();
}
if (m_Autoscale)
{
// Go through all values and find the max
double newValue = 0.0;
for (int i = 0; i < maxSize; ++i)
{
newValue = max(newValue, m_PrimaryValues[i]);
}
// Scale the value up to nearest power of 2
if (newValue > DBL_MAX / 2.0)
{
m_MaxPrimaryValue = DBL_MAX;
}
else
{
m_MaxPrimaryValue = 2.0;
while (m_MaxPrimaryValue < newValue)
{
m_MaxPrimaryValue *= 2.0;
}
}
if (m_SecondaryMeasure && m_SecondaryValues)
{
for (int i = 0; i < maxSize; ++i)
{
newValue = max(newValue, m_SecondaryValues[i]);
}
// Scale the value up to nearest power of 2
if (newValue > DBL_MAX / 2.0)
{
m_MaxSecondaryValue = DBL_MAX;
}
else
{
m_MaxSecondaryValue = 2.0;
while (m_MaxSecondaryValue < newValue)
{
m_MaxSecondaryValue *= 2.0;
}
}
}
}
return true;
}
return false;
}
/*
** Draws the meter on the double buffer
**
*/
bool CMeterHistogram::Draw(Graphics& graphics)
{
if (!CMeter::Draw(graphics) ||
(m_Measure && !m_PrimaryValues) ||
(m_SecondaryMeasure && !m_SecondaryValues)) return false;
GraphicsPath primaryPath;
GraphicsPath secondaryPath;
GraphicsPath bothPath;
Bitmap* primaryBitmap = m_PrimaryImage.GetImage();
Bitmap* secondaryBitmap = m_SecondaryImage.GetImage();
Bitmap* bothBitmap = m_OverlapImage.GetImage();
int x = GetX();
int y = GetY();
// Default values (GraphStart=Right, GraphOrientation=Vertical)
int i;
int startValue = 0;
int* endValueLHS = &i;
int* endValueRHS = &m_W;
int step = 1;
int endValue = -1; //(should be 0, but need to simulate <=)
// GraphStart=Left, GraphOrientation=Vertical
if (m_GraphStartLeft && !m_GraphHorizontalOrientation)
{
startValue = m_W - 1;
endValueLHS = &endValue;
endValueRHS = &i;
step = -1;
}
else if (m_GraphHorizontalOrientation && !m_Flip)
{
endValueRHS = &m_H;
}
else if (m_GraphHorizontalOrientation && m_Flip)
{
startValue = m_H - 1;
endValueLHS = &endValue;
endValueRHS = &i;
step = -1;
}
// Horizontal or Vertical graph
if (m_GraphHorizontalOrientation)
{
for (i = startValue; *endValueLHS < *endValueRHS; i += step)
{
double value = (m_MaxPrimaryValue == 0.0) ?
0.0
: m_PrimaryValues[(i + (m_MeterPos % m_H)) % m_H] / m_MaxPrimaryValue;
value -= m_MinPrimaryValue;
int primaryBarHeight = (int)(m_W * value);
primaryBarHeight = min(m_W, primaryBarHeight);
primaryBarHeight = max(0, primaryBarHeight);
if (m_SecondaryMeasure)
{
value = (m_MaxSecondaryValue == 0.0) ?
0.0
: m_SecondaryValues[(i + m_MeterPos) % m_H] / m_MaxSecondaryValue;
value -= m_MinSecondaryValue;
int secondaryBarHeight = (int)(m_W * value);
secondaryBarHeight = min(m_W, secondaryBarHeight);
secondaryBarHeight = max(0, secondaryBarHeight);
// Check which measured value is higher
int bothBarHeight = min(primaryBarHeight, secondaryBarHeight);
// Cache image/color rectangle for the both lines
{
Rect& r = m_GraphStartLeft ?
Rect(x, y + startValue + (step * i), bothBarHeight, 1)
: Rect(x + m_W - bothBarHeight, y + startValue + (step * i), bothBarHeight, 1);
bothPath.AddRectangle(r); // cache
}
// Cache the image/color rectangle for the rest
if (secondaryBarHeight > primaryBarHeight)
{
Rect& r = m_GraphStartLeft ?
Rect(x + bothBarHeight, y + startValue + (step * i), secondaryBarHeight - bothBarHeight, 1)
: Rect(x + m_W - secondaryBarHeight, y + startValue + (step * i), secondaryBarHeight - bothBarHeight, 1);
secondaryPath.AddRectangle(r); // cache
}
else
{
Rect& r = m_GraphStartLeft ?
Rect(x + bothBarHeight, y + startValue + (step * i), primaryBarHeight - bothBarHeight, 1)
: Rect(x + m_W - primaryBarHeight, y + startValue + (step * i), primaryBarHeight - bothBarHeight, 1);
primaryPath.AddRectangle(r); // cache
}
}
else
{
Rect& r = m_GraphStartLeft ?
Rect(x, y + startValue + (step * i), primaryBarHeight, 1)
: Rect(x + m_W - primaryBarHeight, y + startValue + (step * i), primaryBarHeight, 1);
primaryPath.AddRectangle(r); // cache
}
}
}
else // GraphOrientation=Vertical
{
for (i = startValue; *endValueLHS < *endValueRHS; i += step)
{
double value = (m_MaxPrimaryValue == 0.0) ?
0.0
: m_PrimaryValues[(i + m_MeterPos) % m_W] / m_MaxPrimaryValue;
value -= m_MinPrimaryValue;
int primaryBarHeight = (int)(m_H * value);
primaryBarHeight = min(m_H, primaryBarHeight);
primaryBarHeight = max(0, primaryBarHeight);
if (m_SecondaryMeasure)
{
value = (m_MaxSecondaryValue == 0.0) ?
0.0
: m_SecondaryValues[(i + m_MeterPos) % m_W] / m_MaxSecondaryValue;
value -= m_MinSecondaryValue;
int secondaryBarHeight = (int)(m_H * value);
secondaryBarHeight = min(m_H, secondaryBarHeight);
secondaryBarHeight = max(0, secondaryBarHeight);
// Check which measured value is higher
int bothBarHeight = min(primaryBarHeight, secondaryBarHeight);
// Cache image/color rectangle for the both lines
{
Rect& r = m_Flip ?
Rect(x + startValue + (step * i), y, 1, bothBarHeight)
: Rect(x + startValue + (step * i), y + m_H - bothBarHeight, 1, bothBarHeight);
bothPath.AddRectangle(r); // cache
}
// Cache the image/color rectangle for the rest
if (secondaryBarHeight > primaryBarHeight)
{
Rect& r = m_Flip ?
Rect(x + startValue + (step * i), y + bothBarHeight, 1, secondaryBarHeight - bothBarHeight)
: Rect(x + startValue + (step * i), y + m_H - secondaryBarHeight, 1, secondaryBarHeight - bothBarHeight);
secondaryPath.AddRectangle(r); // cache
}
else
{
Rect& r = m_Flip ?
Rect(x + startValue + (step * i), y + bothBarHeight, 1, primaryBarHeight - bothBarHeight)
: Rect(x + startValue + (step * i), y + m_H - primaryBarHeight, 1, primaryBarHeight - bothBarHeight);
primaryPath.AddRectangle(r); // cache
}
}
else
{
Rect& r = m_Flip ?
Rect(x + startValue + (step * i), y, 1, primaryBarHeight)
: Rect(x + startValue + (step * i), y + m_H - primaryBarHeight, 1, primaryBarHeight);
primaryPath.AddRectangle(r); // cache
}
}
}
// Draw cached rectangles
if (primaryBitmap)
{
Rect r(x, y, primaryBitmap->GetWidth(), primaryBitmap->GetHeight());
graphics.SetClip(&primaryPath);
graphics.DrawImage(primaryBitmap, r, 0, 0, r.Width, r.Height, UnitPixel);
graphics.ResetClip();
}
else
{
SolidBrush brush(m_PrimaryColor);
graphics.FillPath(&brush, &primaryPath);
}
if (m_SecondaryMeasure)
{
if (secondaryBitmap)
{
Rect r(x, y, secondaryBitmap->GetWidth(), secondaryBitmap->GetHeight());
graphics.SetClip(&secondaryPath);
graphics.DrawImage(secondaryBitmap, r, 0, 0, r.Width, r.Height, UnitPixel);
graphics.ResetClip();
}
else
{
SolidBrush brush(m_SecondaryColor);
graphics.FillPath(&brush, &secondaryPath);
}
if (bothBitmap)
{
Rect r(x, y, bothBitmap->GetWidth(), bothBitmap->GetHeight());
graphics.SetClip(&bothPath);
graphics.DrawImage(bothBitmap, r, 0, 0, r.Width, r.Height, UnitPixel);
graphics.ResetClip();
}
else
{
SolidBrush brush(m_OverlapColor);
graphics.FillPath(&brush, &bothPath);
}
}
return true;
}
/*
** Overwritten method to handle the secondary measure binding.
**
*/
void CMeterHistogram::BindMeasure(const std::list<CMeasure*>& measures)
{
CMeter::BindMeasure(measures);
if (!m_SecondaryMeasureName.empty())
{
// Go through the list and check it there is a secondary measure for us
const WCHAR* name = m_SecondaryMeasureName.c_str();
std::list<CMeasure*>::const_iterator i = measures.begin();
for ( ; i != measures.end(); ++i)
{
if (_wcsicmp((*i)->GetName(), name) == 0)
{
m_SecondaryMeasure = (*i);
CMeter::SetAllMeasures(m_SecondaryMeasure);
return;
}
}
std::wstring error = L"The meter [" + m_Name;
error += L"] cannot be bound with [";
error += m_SecondaryMeasureName;
error += L']';
throw CError(error);
}
}