/* Copyright (C) 2010 Kimmo Pekkola, Matt King, spx This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "StdAfx.h" #include "TintedImage.h" #include "ConfigParser.h" #include "System.h" #include "Error.h" #include "Logger.h" using namespace Gdiplus; class ImageCachePool { public: static std::wstring CreateKey(const std::wstring& name, ULONGLONG time, DWORD size, WCHAR* exifOrientation) { std::wstring key; WCHAR buffer[MAX_PATH]; if (PathCanonicalize(buffer, name.c_str())) { key = buffer; } else { key = name; } _wcsupr(&key[0]); size_t len = _snwprintf_s(buffer, _TRUNCATE, L":%llx:%x:%s", time, size, exifOrientation); key.append(buffer, len); return key; } static Bitmap* GetCache(const std::wstring& key) { std::unordered_map::const_iterator iter = c_CacheMap.find(key); if (iter != c_CacheMap.end()) { return (*iter).second->GetCache(); } return NULL; } static void AddCache(const std::wstring& key, Bitmap* bitmap, HGLOBAL hBuffer) { std::unordered_map::const_iterator iter = c_CacheMap.find(key); if (iter != c_CacheMap.end()) { (*iter).second->AddRef(); //LogDebugF(L"* ADD: key=%s, ref=%i", key.c_str(), (*iter).second->GetRef()); } else { c_CacheMap[key] = new ImageCache(bitmap, hBuffer); //LogDebugF(L"* ADD: key=%s, ref=new", key.c_str()); } } static void RemoveCache(const std::wstring& key) { std::unordered_map::const_iterator iter = c_CacheMap.find(key); if (iter != c_CacheMap.end()) { ImageCache* cache = (*iter).second; cache->Release(); //LogDebugF(L"* REMOVE: key=%s, ref=%i", key.c_str(), cache->GetRef()); if (cache->IsInvalid()) { //LogDebugF(L"* EMPTY-ERASE: key=%s", key.c_str()); c_CacheMap.erase(iter); delete cache; } } } private: class ImageCache { public: ImageCache(Bitmap* bitmap, HGLOBAL hBuffer) : m_Bitmap(bitmap), m_hBuffer(hBuffer), m_Ref(1) {} ~ImageCache() { Dispose(); } void AddRef() { ++m_Ref; } void Release() { if (m_Ref > 0) { --m_Ref; } if (m_Ref == 0) { Dispose(); } } bool IsInvalid() { return m_Ref == 0; } //int GetRef() { return m_Ref; } Bitmap* GetCache() { return m_Bitmap; } private: ImageCache() {} ImageCache(const ImageCache& cache) {} void Dispose() { delete m_Bitmap; m_Bitmap = NULL; if (m_hBuffer) { ::GlobalFree(m_hBuffer); m_hBuffer = NULL; } } Bitmap* m_Bitmap; HGLOBAL m_hBuffer; int m_Ref; }; static std::unordered_map c_CacheMap; }; std::unordered_map ImageCachePool::c_CacheMap; #define PI (3.14159265f) #define CONVERT_TO_RADIANS(X) ((X) * (PI / 180.0f)) // GrayScale Matrix const Gdiplus::ColorMatrix CTintedImage::c_GreyScaleMatrix = { 0.299f, 0.299f, 0.299f, 0.0f, 0.0f, 0.587f, 0.587f, 0.587f, 0.0f, 0.0f, 0.114f, 0.114f, 0.114f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; const Gdiplus::ColorMatrix CTintedImage::c_IdentityMatrix = { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; CTintedImageHelper_DefineOptionArray(CTintedImage::c_DefaultOptionArray, L""); /* ** The constructor. ** ** If disableTransform is true, ImageCrop and ImageRotate are ignored. ** */ CTintedImage::CTintedImage(const WCHAR* name, const WCHAR** optionArray, bool disableTransform) : m_DisableTransform(disableTransform), m_Name(name ? name : L"Image"), m_OptionArray(optionArray ? optionArray : c_DefaultOptionArray), m_Bitmap(), m_BitmapTint(), m_NeedsCrop(false), m_NeedsTinting(false), m_NeedsTransform(false), m_Crop(-1, -1, -1, -1), m_CropMode(CROPMODE_TL), m_GreyScale(false), m_ColorMatrix(new ColorMatrix(c_IdentityMatrix)), m_Flip(RotateNoneFlipNone), m_Rotate(), m_UseExifOrientation(false) { } /* ** The destructor ** */ CTintedImage::~CTintedImage() { DisposeImage(); delete m_ColorMatrix; } /* ** Disposes the image buffers. ** */ void CTintedImage::DisposeImage() { delete m_BitmapTint; m_BitmapTint = NULL; m_Bitmap = NULL; if (!m_CacheKey.empty()) { ImageCachePool::RemoveCache(m_CacheKey); m_CacheKey.clear(); } } /* ** Loads the image from file handle ** */ Bitmap* CTintedImage::LoadImageFromFileHandle(HANDLE fileHandle, DWORD fileSize, HGLOBAL* phBuffer) { HGLOBAL hBuffer = ::GlobalAlloc(GMEM_MOVEABLE, fileSize); if (hBuffer) { void* pBuffer = ::GlobalLock(hBuffer); if (pBuffer) { DWORD readBytes; ReadFile(fileHandle, pBuffer, fileSize, &readBytes, NULL); ::GlobalUnlock(hBuffer); IStream* pStream = NULL; if (::CreateStreamOnHGlobal(hBuffer, FALSE, &pStream) == S_OK) { Bitmap* bitmap = Bitmap::FromStream(pStream); pStream->Release(); if (Ok == bitmap->GetLastStatus()) { GUID guid; if (Ok == bitmap->GetRawFormat(&guid) && guid != ImageFormatIcon) { // Gather EXIF orientation information if (m_UseExifOrientation) { UINT size = bitmap->GetPropertyItemSize(PropertyTagOrientation); if (size) { RotateFlipType flip = RotateNoneFlipNone; PropertyItem* orientation = (PropertyItem*)new BYTE[size]; bitmap->GetPropertyItem(PropertyTagOrientation, size, orientation); if (orientation) { switch(*(short*)orientation->value) { case 8: flip = Rotate270FlipNone; break; case 7: flip = Rotate270FlipX; break; case 6: flip = Rotate90FlipNone; break; case 5: flip = Rotate90FlipX; break; case 4: flip = Rotate180FlipX; break; case 3: flip = Rotate180FlipNone; break; case 2: flip = RotateNoneFlipX; break; default: flip = RotateNoneFlipNone; } bitmap->RotateFlip(flip); } delete [] orientation; } } //////////////////////////////////////////// // Convert loaded image to faster blittable bitmap (may increase memory usage slightly) Rect r(0, 0, bitmap->GetWidth(), bitmap->GetHeight()); Bitmap* clone = new Bitmap(r.Width, r.Height, PixelFormat32bppPARGB); { Graphics graphics(clone); graphics.DrawImage(bitmap, r, 0, 0, r.Width, r.Height, UnitPixel); } delete bitmap; bitmap = clone; ::GlobalFree(hBuffer); hBuffer = NULL; //////////////////////////////////////////// } *phBuffer = hBuffer; return bitmap; } delete bitmap; } } ::GlobalFree(hBuffer); } *phBuffer = NULL; return NULL; } /* ** Loads the image from disk ** */ void CTintedImage::LoadImage(const std::wstring& imageName, bool bLoadAlways) { // Load the bitmap if defined if (!imageName.empty()) { std::wstring filename = imageName; // Check extension and if it is missing, add .png size_t pos = filename.rfind(L'\\'); if (filename.find(L'.', (pos == std::wstring::npos) ? 0 : pos + 1) == std::wstring::npos) { filename += L".png"; } // Read the bitmap to memory so that it's not locked by GDI+ DWORD fileSize; HANDLE fileHandle = CreateFile(filename.c_str(), GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL | FILE_FLAG_SEQUENTIAL_SCAN, NULL); if (fileHandle != INVALID_HANDLE_VALUE && (fileSize = GetFileSize(fileHandle, NULL)) != INVALID_FILE_SIZE) { // Compare the filename/timestamp/filesize to check if the file has been changed (don't load if it's not) ULONGLONG fileTime; GetFileTime(fileHandle, NULL, NULL, (LPFILETIME)&fileTime); std::wstring key = ImageCachePool::CreateKey(filename, fileTime, fileSize, m_UseExifOrientation ? L"EXIF" : L"NONE"); if (bLoadAlways || wcscmp(key.c_str(), m_CacheKey.c_str()) != 0) { DisposeImage(); Bitmap* bitmap = ImageCachePool::GetCache(key); HGLOBAL hBuffer = NULL; m_Bitmap = (bitmap) ? bitmap : LoadImageFromFileHandle(fileHandle, fileSize, &hBuffer); if (m_Bitmap) { m_CacheKey = key; ImageCachePool::AddCache(key, m_Bitmap, hBuffer); // Check whether the new image needs tinting (or cropping, flipping, rotating) if (!m_NeedsCrop) { if (m_Crop.Width >= 0 || m_Crop.Height >= 0) { m_NeedsCrop = true; } } if (!m_NeedsTinting) { if (m_GreyScale || !CompareColorMatrix(m_ColorMatrix, &c_IdentityMatrix)) { m_NeedsTinting = true; } } if (!m_NeedsTransform) { if (m_Flip != RotateNoneFlipNone || m_Rotate != 0.0f) { m_NeedsTransform = true; } } } else { LogErrorF(L"%s: Unable to load: %s", m_Name, filename.c_str()); } } CloseHandle(fileHandle); if (m_Bitmap) { // We need a copy of the image if has tinting (or flipping, rotating) if (m_NeedsCrop || m_NeedsTinting || m_NeedsTransform) { delete m_BitmapTint; m_BitmapTint = NULL; if (m_Bitmap->GetWidth() > 0 && m_Bitmap->GetHeight() > 0) { ApplyCrop(); if (!m_BitmapTint || (m_BitmapTint->GetWidth() > 0 && m_BitmapTint->GetHeight() > 0)) { ApplyTint(); ApplyTransform(); } } m_NeedsCrop = false; m_NeedsTinting = false; m_NeedsTransform = false; } } } else { LogErrorF(L"%s: Unable to open: %s", m_Name, filename.c_str()); if (fileHandle != INVALID_HANDLE_VALUE) { CloseHandle(fileHandle); } DisposeImage(); } } else if (IsLoaded()) { DisposeImage(); } } /* ** This will apply the cropping. ** */ void CTintedImage::ApplyCrop() { if (m_Crop.Width >= 0 && m_Crop.Height >= 0) { if (m_Crop.Width == 0 || m_Crop.Height == 0) { m_BitmapTint = new Bitmap(0, 0, PixelFormat32bppPARGB); // create dummy bitmap } else { int imageW = m_Bitmap->GetWidth(); int imageH = m_Bitmap->GetHeight(); int x, y; switch (m_CropMode) { case CROPMODE_TL: default: x = m_Crop.X; y = m_Crop.Y; break; case CROPMODE_TR: x = m_Crop.X + imageW; y = m_Crop.Y; break; case CROPMODE_BR: x = m_Crop.X + imageW; y = m_Crop.Y + imageH; break; case CROPMODE_BL: x = m_Crop.X; y = m_Crop.Y + imageH; break; case CROPMODE_C: x = m_Crop.X + (imageW / 2); y = m_Crop.Y + (imageH / 2); break; } Rect r(0, 0, m_Crop.Width, m_Crop.Height); m_BitmapTint = new Bitmap(r.Width, r.Height, PixelFormat32bppPARGB); Graphics graphics(m_BitmapTint); graphics.DrawImage(m_Bitmap, r, x, y, r.Width, r.Height, UnitPixel); } } } /* ** This will apply the Greyscale matrix and the color tinting. ** */ void CTintedImage::ApplyTint() { bool useColorMatrix = !CompareColorMatrix(m_ColorMatrix, &c_IdentityMatrix); if (m_GreyScale || useColorMatrix) { Bitmap* original = GetImage(); Bitmap* tint; if (m_GreyScale && !useColorMatrix) { tint = TurnGreyscale(original); } else { ImageAttributes ImgAttr; ImgAttr.SetColorMatrix(m_ColorMatrix, ColorMatrixFlagsDefault, ColorAdjustTypeBitmap); Rect r(0, 0, original->GetWidth(), original->GetHeight()); tint = new Bitmap(r.Width, r.Height, PixelFormat32bppPARGB); Graphics graphics(tint); if (m_GreyScale) { Bitmap* gray = TurnGreyscale(original); graphics.DrawImage(gray, r, 0, 0, r.Width, r.Height, UnitPixel, &ImgAttr); delete gray; } else { graphics.DrawImage(original, r, 0, 0, r.Width, r.Height, UnitPixel, &ImgAttr); } } delete m_BitmapTint; m_BitmapTint = tint; } } /* ** Turns the image greyscale by applying a greyscale color matrix. ** Note that the returned bitmap image must be freed by caller. ** */ Bitmap* CTintedImage::TurnGreyscale(Bitmap* source) { ImageAttributes ImgAttr; ImgAttr.SetColorMatrix(&c_GreyScaleMatrix, ColorMatrixFlagsDefault, ColorAdjustTypeBitmap); // We need a blank bitmap to paint our greyscale to in case of alpha Rect r(0, 0, source->GetWidth(), source->GetHeight()); Bitmap* bitmap = new Bitmap(r.Width, r.Height, PixelFormat32bppPARGB); Graphics graphics(bitmap); graphics.DrawImage(source, r, 0, 0, r.Width, r.Height, UnitPixel, &ImgAttr); return bitmap; } /* ** This will apply the flipping and rotating. ** */ void CTintedImage::ApplyTransform() { if (m_Rotate != 0.0f) { Bitmap* original = GetImage(); REAL originalW = (REAL)original->GetWidth(); REAL originalH = (REAL)original->GetHeight(); REAL cos_f = cos(CONVERT_TO_RADIANS(m_Rotate)), sin_f = sin(CONVERT_TO_RADIANS(m_Rotate)); REAL transformW = fabs(originalW * cos_f) + fabs(originalH * sin_f); REAL transformH = fabs(originalW * sin_f) + fabs(originalH * cos_f); Bitmap* transform = new Bitmap((int)(transformW + 0.5f), (int)(transformH + 0.5f), PixelFormat32bppPARGB); Graphics graphics(transform); graphics.SetPixelOffsetMode(PixelOffsetModeHighQuality); REAL cx = transformW / 2.0f; REAL cy = transformH / 2.0f; Matrix rotateMatrix; rotateMatrix.RotateAt(m_Rotate, PointF(cx, cy)); graphics.SetTransform(&rotateMatrix); if (m_Flip != RotateNoneFlipNone) { original->RotateFlip(m_Flip); } RectF r(cx - originalW / 2.0f, cy - originalH / 2.0f, originalW, originalH); graphics.DrawImage(original, r, -0.5f, -0.5f, originalW + 1.0f, originalH + 1.0f, UnitPixel); // Makes the anti-aliased edge if (m_Flip != RotateNoneFlipNone) { original->RotateFlip(m_Flip); } delete m_BitmapTint; m_BitmapTint = transform; } else if (m_Flip != RotateNoneFlipNone) { Bitmap* original = GetImage(); Rect r(0, 0, original->GetWidth(), original->GetHeight()); Bitmap* transform = new Bitmap(r.Width, r.Height, PixelFormat32bppPARGB); Graphics graphics(transform); original->RotateFlip(m_Flip); graphics.DrawImage(original, r, 0, 0, r.Width, r.Height, UnitPixel); original->RotateFlip(m_Flip); delete m_BitmapTint; m_BitmapTint = transform; } } /* ** Read the meter-specific options from the ini-file. ** */ void CTintedImage::ReadOptions(CConfigParser& parser, const WCHAR* section) { // Store the current values so we know if the image needs to be tinted or transformed Rect oldCrop = m_Crop; CROPMODE oldCropMode = m_CropMode; bool oldGreyScale = m_GreyScale; ColorMatrix oldColorMatrix = *m_ColorMatrix; RotateFlipType oldFlip = m_Flip; REAL oldRotate = m_Rotate; if (!m_DisableTransform) { m_Crop.X = m_Crop.Y = m_Crop.Width = m_Crop.Height = -1; m_CropMode = CROPMODE_TL; const std::wstring& crop = parser.ReadString(section, m_OptionArray[OptionIndexImageCrop], L""); if (!crop.empty()) { if (wcschr(crop.c_str(), L',')) { WCHAR* parseSz = _wcsdup(crop.c_str()); WCHAR* token; token = wcstok(parseSz, L","); if (token) { m_Crop.X = parser.ParseInt(token, 0); token = wcstok(NULL, L","); if (token) { m_Crop.Y = parser.ParseInt(token, 0); token = wcstok(NULL, L","); if (token) { m_Crop.Width = parser.ParseInt(token, 0); token = wcstok(NULL, L","); if (token) { m_Crop.Height = parser.ParseInt(token, 0); token = wcstok(NULL, L","); if (token) { m_CropMode = (CROPMODE)parser.ParseInt(token, 0); } } } } } free(parseSz); } if (m_CropMode < CROPMODE_TL || m_CropMode > CROPMODE_C) { m_CropMode = CROPMODE_TL; LogErrorF(L"%s=%s (origin) is not valid in [%s]", m_OptionArray[OptionIndexImageCrop], crop, section); } } } m_NeedsCrop = (oldCrop.X != m_Crop.X || oldCrop.Y != m_Crop.Y || oldCrop.Width != m_Crop.Width || oldCrop.Height != m_Crop.Height || oldCropMode != m_CropMode); m_GreyScale = 0!=parser.ReadInt(section, m_OptionArray[OptionIndexGreyscale], 0); Color tint = parser.ReadColor(section, m_OptionArray[OptionIndexImageTint], Color::White); int alpha = parser.ReadInt(section, m_OptionArray[OptionIndexImageAlpha], tint.GetAlpha()); // for backwards compatibility alpha = min(255, alpha); alpha = max(0, alpha); *m_ColorMatrix = c_IdentityMatrix; // Read in the Color Matrix // It has to be read in like this because it crashes when reading over 17 floats // at one time. The parser does it fine, but after putting the returned values // into the Color Matrix the next time the parser is used it crashes. std::vector matrix1 = parser.ReadFloats(section, m_OptionArray[OptionIndexColorMatrix1]); if (matrix1.size() == 5) { for (int i = 0; i < 4; ++i) // The fifth column must be 0. { m_ColorMatrix->m[0][i] = matrix1[i]; } } else { m_ColorMatrix->m[0][0] = (REAL)tint.GetRed() / 255.0f; } std::vector matrix2 = parser.ReadFloats(section, m_OptionArray[OptionIndexColorMatrix2]); if (matrix2.size() == 5) { for (int i = 0; i < 4; ++i) // The fifth column must be 0. { m_ColorMatrix->m[1][i] = matrix2[i]; } } else { m_ColorMatrix->m[1][1] = (REAL)tint.GetGreen() / 255.0f; } std::vector matrix3 = parser.ReadFloats(section, m_OptionArray[OptionIndexColorMatrix3]); if (matrix3.size() == 5) { for (int i = 0; i < 4; ++i) // The fifth column must be 0. { m_ColorMatrix->m[2][i] = matrix3[i]; } } else { m_ColorMatrix->m[2][2] = (REAL)tint.GetBlue() / 255.0f; } std::vector matrix4 = parser.ReadFloats(section, m_OptionArray[OptionIndexColorMatrix4]); if (matrix4.size() == 5) { for (int i = 0; i < 4; ++i) // The fifth column must be 0. { m_ColorMatrix->m[3][i] = matrix4[i]; } } else { m_ColorMatrix->m[3][3] = (REAL)alpha / 255.0f; } std::vector matrix5 = parser.ReadFloats(section, m_OptionArray[OptionIndexColorMatrix5]); if (matrix5.size() == 5) { for (int i = 0; i < 4; ++i) // The fifth column must be 1. { m_ColorMatrix->m[4][i] = matrix5[i]; } } m_NeedsTinting = (oldGreyScale != m_GreyScale || !CompareColorMatrix(&oldColorMatrix, m_ColorMatrix)); m_UseExifOrientation = 0!=parser.ReadInt(section, m_OptionArray[OptionIndexUseExifOrientation], 0); const WCHAR* flip = parser.ReadString(section, m_OptionArray[OptionIndexImageFlip], L"NONE").c_str(); if (_wcsicmp(flip, L"NONE") == 0) { m_Flip = RotateNoneFlipNone; } else if (_wcsicmp(flip, L"HORIZONTAL") == 0) { m_Flip = RotateNoneFlipX; } else if (_wcsicmp(flip, L"VERTICAL") == 0) { m_Flip = RotateNoneFlipY; } else if (_wcsicmp(flip, L"BOTH") == 0) { m_Flip = RotateNoneFlipXY; } else { LogErrorF(L"%s=%s (origin) is not valid in [%s]", m_OptionArray[OptionIndexImageFlip], flip, section); } if (!m_DisableTransform) { m_Rotate = (REAL)parser.ReadFloat(section, m_OptionArray[OptionIndexImageRotate], 0.0); } m_NeedsTransform = (oldFlip != m_Flip || oldRotate != m_Rotate); } /* ** Compares the two given color matrices. ** */ bool CTintedImage::CompareColorMatrix(const Gdiplus::ColorMatrix* a, const Gdiplus::ColorMatrix* b) { for (int i = 0; i < 5; ++i) { for (int j = 0; j < 4; ++j) // The fifth column is reserved. { if (a->m[i][j] != b->m[i][j]) { return false; } } } return true; }