/* Copyright (C) 2001 Kimmo Pekkola This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "StdAfx.h" #include "Error.h" #include "Meter.h" #include "MeterBitmap.h" #include "MeterBar.h" #include "MeterHistogram.h" #include "MeterString.h" #include "MeterImage.h" #include "MeterLine.h" #include "MeterRoundLine.h" #include "MeterRotator.h" #include "MeterButton.h" #include "Measure.h" #include "Rainmeter.h" using namespace Gdiplus; /* ** CMeter ** ** The constructor ** */ CMeter::CMeter(CMeterWindow* meterWindow) { m_Measure = NULL; m_X = 0; m_Y = 0; m_W = 0; m_H = 0; m_RelativeMeter = NULL; m_Hidden = false; m_SolidBevel = BEVELTYPE_NONE; m_MouseOver = false; m_UpdateDivider = 1; m_UpdateCounter = 0; m_RelativeX = POSITION_ABSOLUTE; m_RelativeY = POSITION_ABSOLUTE; m_SolidAngle = 0.0f; m_AntiAlias = false; m_DynamicVariables = false; m_Initialized = false; m_HasMouseAction = false; m_MouseActionCursor = true; m_MeterWindow = meterWindow; } /* ** ~CMeter ** ** The destructor ** */ CMeter::~CMeter() { } /* ** Initialize ** ** Initializes the meter. The base implementation just stores the pointer. ** Usually this method is overwritten by the inherited classes, which load ** bitmaps and such things during initialization. ** */ void CMeter::Initialize() { m_Initialized = true; } /* ** GetX ** ** Returns the X-position of the meter. ** */ int CMeter::GetX(bool abs) { if (m_RelativeX != POSITION_ABSOLUTE && m_MeterWindow) { if (m_RelativeMeter == NULL) { std::list& meters = m_MeterWindow->GetMeters(); std::list::const_iterator iter = meters.begin(); // Find this meter for ( ; iter != meters.end(); ++iter) { if (*iter == this && iter != meters.begin()) { --iter; m_RelativeMeter = (*iter); if (m_RelativeX == POSITION_RELATIVE_TL) { return m_RelativeMeter->GetX(true) + m_X; } else { return m_RelativeMeter->GetX(true) + m_RelativeMeter->GetW() + m_X; } } } } else { if (m_RelativeX == POSITION_RELATIVE_TL) { return m_RelativeMeter->GetX(true) + m_X; } else { return m_RelativeMeter->GetX(true) + m_RelativeMeter->GetW() + m_X; } } } return m_X; } /* ** GetY ** ** Returns the Y-position of the meter. ** */ int CMeter::GetY(bool abs) { if (m_RelativeY != POSITION_ABSOLUTE && m_MeterWindow) { if (m_RelativeMeter == NULL) { std::list& meters = m_MeterWindow->GetMeters(); std::list::const_iterator iter = meters.begin(); // Find this meter for ( ; iter != meters.end(); ++iter) { if (*iter == this && iter != meters.begin()) { --iter; m_RelativeMeter = (*iter); if (m_RelativeY == POSITION_RELATIVE_TL) { return m_RelativeMeter->GetY() + m_Y; } else { return m_RelativeMeter->GetY() + m_RelativeMeter->GetH() + m_Y; } } } } else { if (m_RelativeY == POSITION_RELATIVE_TL) { return m_RelativeMeter->GetY() + m_Y; } else { return m_RelativeMeter->GetY() + m_RelativeMeter->GetH() + m_Y; } } } return m_Y; } /* ** GetMeterRect ** ** Returns a RECT containing the dimensions of the meter within the MeterWindow ** */ RECT CMeter::GetMeterRect() { RECT meterRect; meterRect.left = GetX(); meterRect.top = GetY(); meterRect.right = GetX() + m_W; meterRect.bottom = GetY() + m_H; return meterRect; } /* ** HitTest ** ** Checks if the given point is inside the meter. ** */ bool CMeter::HitTest(int x, int y) { if (x >= GetX() && x < GetX() + GetW() && y >= GetY() && y < GetY() + GetH()) { return true; } return false; } /* ** ReadConfig ** ** Reads the meter-specific configs from the ini-file. The base implementation ** reads the common settings for all meters. The inherited classes must call ** the base implementation if they overwrite this method. ** */ void CMeter::ReadConfig(const WCHAR* section) { bool replaced; CConfigParser& parser = m_MeterWindow->GetParser(); // The MeterStyle defines a template where the values are read if the meter doesn't have it itself const std::wstring& style = parser.ReadString(section, L"MeterStyle", L""); if (!style.empty()) { parser.SetStyleTemplate(style); } replaced = false; std::wstring coord = parser.ReadString(section, L"X", L"0", true, &replaced); if (!m_Initialized || replaced) { if (!coord.empty()) { size_t len = coord.size(); if (coord[len - 1] == L'r') { m_RelativeX = POSITION_RELATIVE_TL; coord.erase(--len); } else if (coord[len - 1] == L'R') { m_RelativeX = POSITION_RELATIVE_BR; coord.erase(--len); } else { m_RelativeX = POSITION_ABSOLUTE; } double val; if (len >= 2 && coord[0] == L'(' && coord[len - 1] == L')' && -1 != parser.ReadFormula(coord, &val)) { m_X = (int)val; } else { m_X = (int)parser.ParseDouble(coord, 0.0); } } else { m_X = 0; m_RelativeX = POSITION_ABSOLUTE; } } replaced = false; coord = parser.ReadString(section, L"Y", L"0", true, &replaced); if (!m_Initialized || replaced) { if (!coord.empty()) { size_t len = coord.size(); if (coord[len - 1] == L'r') { m_RelativeY = POSITION_RELATIVE_TL; coord.erase(--len); } else if (coord[len - 1] == L'R') { m_RelativeY = POSITION_RELATIVE_BR; coord.erase(--len); } else { m_RelativeY = POSITION_ABSOLUTE; } double val; if (len >= 2 && coord[0] == L'(' && coord[len - 1] == L')' && -1 != parser.ReadFormula(coord, &val)) { m_Y = (int)val; } else { m_Y = (int)parser.ParseDouble(coord, 0.0); } } else { m_Y = 0; m_RelativeY = POSITION_ABSOLUTE; } } m_W = (int)parser.ReadFormula(section, L"W", 1.0); m_H = (int)parser.ReadFormula(section, L"H", 1.0); if (!m_Initialized) { m_Hidden = 0!=parser.ReadInt(section, L"Hidden", 0); } else { replaced = false; const std::wstring& result = parser.ReadString(section, L"Hidden", L"0", true, &replaced); if (replaced) { m_Hidden = 0!=(int)parser.ParseDouble(result, 0.0, true); } } m_SolidBevel = (BEVELTYPE)parser.ReadInt(section, L"BevelType", BEVELTYPE_NONE); m_SolidColor = parser.ReadColor(section, L"SolidColor", Color(0, 0, 0, 0)); m_SolidColor2 = parser.ReadColor(section, L"SolidColor2", m_SolidColor); m_SolidAngle = (Gdiplus::REAL)parser.ReadFloat(section, L"GradientAngle", 0.0); m_RightMouseDownAction = parser.ReadString(section, L"RightMouseDownAction", L"", false); m_LeftMouseDownAction = parser.ReadString(section, L"LeftMouseDownAction", L"", false); m_MiddleMouseDownAction = parser.ReadString(section, L"MiddleMouseDownAction", L"", false); m_RightMouseUpAction = parser.ReadString(section, L"RightMouseUpAction", L"", false); m_LeftMouseUpAction = parser.ReadString(section, L"LeftMouseUpAction", L"", false); m_MiddleMouseUpAction = parser.ReadString(section, L"MiddleMouseUpAction", L"", false); m_RightMouseDoubleClickAction = parser.ReadString(section, L"RightMouseDoubleClickAction", L"", false); m_LeftMouseDoubleClickAction = parser.ReadString(section, L"LeftMouseDoubleClickAction", L"", false); m_MiddleMouseDoubleClickAction = parser.ReadString(section, L"MiddleMouseDoubleClickAction", L"", false); m_MouseOverAction = parser.ReadString(section, L"MouseOverAction", L"", false); m_MouseLeaveAction = parser.ReadString(section, L"MouseLeaveAction", L"", false); m_MouseActionCursor = 0!=parser.ReadInt(section, L"MouseActionCursor", m_MouseActionCursor); m_HasMouseAction = ( !m_LeftMouseUpAction.empty() || !m_LeftMouseDownAction.empty() || !m_LeftMouseDoubleClickAction.empty() || !m_MiddleMouseUpAction.empty() || !m_MiddleMouseDownAction.empty() || !m_MiddleMouseDoubleClickAction.empty() || !m_RightMouseUpAction.empty() || !m_RightMouseDownAction.empty() || !m_RightMouseDoubleClickAction.empty() ); m_ToolTipText = parser.ReadString(section, L"ToolTipText", L"", true); m_ToolTipTitle = parser.ReadString(section, L"ToolTipTitle", L"", true); m_ToolTipIcon = parser.ReadString(section, L"ToolTipIcon", L"", true); m_ToolTipWidth = parser.ReadInt(section, L"ToolTipWidth", 1000); m_ToolTipType = 0!=parser.ReadInt(section, L"ToolTipType", 0); m_MeasureName = parser.ReadString(section, L"MeasureName", L""); m_UpdateDivider = parser.ReadInt(section, L"UpdateDivider", 1); m_UpdateCounter = m_UpdateDivider; m_AntiAlias = 0!=parser.ReadInt(section, L"AntiAlias", 0); m_DynamicVariables = 0!=parser.ReadInt(section, L"DynamicVariables", 0); std::vector matrix = parser.ReadFloats(section, L"TransformationMatrix"); if (matrix.size() == 6) { m_Transformation.SetElements(matrix[0], matrix[1], matrix[2], matrix[3], matrix[4], matrix[5]); } else if (!matrix.empty()) { DebugLog(L"The transformation matrix has incorrect number of values:", parser.ReadString(section, L"TransformationMatrix", L"").c_str()); } std::wstring group = parser.ReadString(section, L"Group", L""); InitializeGroup(group); /* Are these necessary? if (m_W == 0 || m_H == 0) { throw CError(std::wstring(L"The meter ") + section + L" has zero dimensions.", __LINE__, __FILE__); } */ } /* ** BindMeasure ** ** Binds this meter to the given measure. The same measure can be bound to ** several meters but one meter and only be bound to one measure. ** */ void CMeter::BindMeasure(std::list& measures) { // The meter is not bound to anything if (m_MeasureName.empty()) { throw CError(std::wstring(L"The meter [") + m_Name + L"] is not bound to anything!", __LINE__, __FILE__); } // Go through the list and check it there is a measure for us std::list::const_iterator i = measures.begin(); for( ; i != measures.end(); ++i) { if(_wcsicmp((*i)->GetName(), m_MeasureName.c_str()) == 0) { m_Measure = (*i); return; } } // Error :) throw CError(std::wstring(L"The meter [") + m_Name + L"] cannot be bound with [" + m_MeasureName + L"]!", __LINE__, __FILE__); } /* ** Create ** ** Creates the given meter. This is the factory method for the meters. ** If new meters are implemented this method needs to be updated. ** */ CMeter* CMeter::Create(const WCHAR* meter, CMeterWindow* meterWindow) { if(_wcsicmp(L"HISTOGRAM", meter) == 0) { return new CMeterHistogram(meterWindow); } else if(_wcsicmp(L"STRING", meter) == 0) { return new CMeterString(meterWindow); } else if(_wcsicmp(L"BAR", meter) == 0) { return new CMeterBar(meterWindow); } else if(_wcsicmp(L"BITMAP", meter) == 0) { return new CMeterBitmap(meterWindow); } else if(_wcsicmp(L"IMAGE", meter) == 0) { return new CMeterImage(meterWindow); } else if(_wcsicmp(L"LINE", meter) == 0) { return new CMeterLine(meterWindow); } else if(_wcsicmp(L"ROUNDLINE", meter) == 0) { return new CMeterRoundLine(meterWindow); } else if(_wcsicmp(L"ROTATOR", meter) == 0) { return new CMeterRotator(meterWindow); } else if(_wcsicmp(L"BUTTON", meter) == 0) { return new CMeterButton(meterWindow); } // Error throw CError(std::wstring(L"No such meter: ") + meter, __LINE__, __FILE__); return NULL; } /* ** Update ** ** Updates the value(s) from the measures. Derived classes should ** only update if this returns true; */ bool CMeter::Update() { // Only update the meter's value when the divider is equal to the counter ++m_UpdateCounter; if (m_UpdateCounter < m_UpdateDivider) return false; m_UpdateCounter = 0; return true; } /* ** SetAllMeasures ** ** Creates a vector containing all the defined measures (Histogram) */ void CMeter::SetAllMeasures(CMeasure* measure) { m_AllMeasures.clear(); m_AllMeasures.push_back(m_Measure); m_AllMeasures.push_back(measure); } void CMeter::SetAllMeasures(std::vector measures) { m_AllMeasures.clear(); m_AllMeasures.push_back(m_Measure); std::vector::const_iterator i = measures.begin(); for( ; i != measures.end(); ++i) { m_AllMeasures.push_back(*i); } } /* ** ReplaceMeasures ** ** Replaces %1, %2 etc with the corresponding measure value */ std::wstring CMeter::ReplaceMeasures(std::wstring source) { std::vector stringValues; if (!m_AllMeasures.empty()) { stringValues.push_back(m_AllMeasures.front()->GetStringValue(true, 1, 0, false)); // Get the values for the other measures for (size_t i = 1; i < m_AllMeasures.size(); ++i) { stringValues.push_back(m_AllMeasures[i]->GetStringValue(true, 1, 0, false)); } } else if (m_Measure != NULL) { stringValues.push_back(m_Measure->GetStringValue(true, 1, 0, false)); } else { return source; } WCHAR buffer[256]; // Create the actual text (i.e. replace %1, %2, .. with the measure texts) for (size_t i = 0; i < stringValues.size(); ++i) { wsprintf(buffer, L"%%%i", i + 1); size_t start = 0; size_t pos = std::wstring::npos; do { pos = source.find(buffer, start); if (pos != std::wstring::npos) { source.replace(source.begin() + pos, source.begin() + pos + wcslen(buffer), stringValues[i]); start = pos + stringValues[i].length(); } } while(pos != std::wstring::npos); } return source; } /* ** CreateToolTip ** ** Does the initial construction of the ToolTip for the meter */ void CMeter::CreateToolTip(CMeterWindow* meterWindow) { HWND hwndTT; if(!m_ToolTipType) { hwndTT = CreateWindowEx(WS_EX_TOPMOST, TOOLTIPS_CLASS, NULL, WS_POPUP | TTS_NOPREFIX | TTS_ALWAYSTIP, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, m_MeterWindow->GetWindow(), NULL, m_MeterWindow->GetMainObject()->GetInstance(), NULL); } else { hwndTT = CreateWindowEx(WS_EX_TOPMOST, TOOLTIPS_CLASS, NULL, WS_POPUP | TTS_NOPREFIX | TTS_ALWAYSTIP | TTS_BALLOON, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, m_MeterWindow->GetWindow(), NULL, m_MeterWindow->GetMainObject()->GetInstance(), NULL); } SetWindowPos(hwndTT, HWND_TOPMOST, 0, 0, 0, 0, SWP_NOMOVE | SWP_NOSIZE | SWP_NOACTIVATE); TOOLINFO ti = { 0 }; ti.cbSize = sizeof(TOOLINFO); ti.uFlags = TTF_SUBCLASS; ti.hwnd = m_MeterWindow->GetWindow(); ti.hinst = m_MeterWindow->GetMainObject()->GetInstance(); std::wstring text = ReplaceMeasures(m_ToolTipText); ti.lpszText = (PTSTR) text.c_str(); ti.rect = GetMeterRect(); SendMessage(hwndTT, TTM_ADDTOOL, NULL, (LPARAM) (LPTOOLINFO) &ti); SendMessage(hwndTT, TTM_SETMAXTIPWIDTH, NULL, m_ToolTipWidth); if (!m_ToolTipTitle.empty()) { HICON hIcon = NULL; if (!m_ToolTipIcon.empty()) { if (!_wcsicmp(m_ToolTipIcon.c_str(), L"INFO")) { hIcon = (HICON) TTI_INFO; } else if (!_wcsicmp(m_ToolTipIcon.c_str(), L"WARNING")) { hIcon = (HICON) TTI_WARNING; } else if (!_wcsicmp(m_ToolTipIcon.c_str(), L"ERROR")) { hIcon = (HICON) TTI_ERROR; } else if (!_wcsicmp(m_ToolTipIcon.c_str(), L"QUESTION")) { hIcon = LoadIcon(NULL, IDI_QUESTION); } else if (!_wcsicmp(m_ToolTipIcon.c_str(), L"SHIELD")) { hIcon = LoadIcon(NULL, IDI_SHIELD); } else { hIcon = (HICON) LoadImage(NULL, m_ToolTipIcon.c_str(), IMAGE_ICON, 0, 0, LR_LOADFROMFILE); } } text = ReplaceMeasures(m_ToolTipTitle); SendMessage(hwndTT, TTM_SETTITLE, (WPARAM) hIcon, (LPARAM) text.c_str()); DestroyIcon(hIcon); } if (IsHidden()) { SendMessage(hwndTT, TTM_ACTIVATE, FALSE, NULL); } m_ToolTipHandle = hwndTT; } /* ** UpdateToolTip ** ** Updates the ToolTip to match new values */ void CMeter::UpdateToolTip() { HWND hwndTT = m_ToolTipHandle; TOOLINFO ti = { 0 }; ti.cbSize = sizeof(TOOLINFO); ti.hwnd = m_MeterWindow->GetWindow(); SendMessage(hwndTT, TTM_GETTOOLINFO, NULL, (LPARAM) (LPTOOLINFO) &ti); std::wstring text = ReplaceMeasures(m_ToolTipText); ti.lpszText = (PTSTR) text.c_str(); ti.rect = GetMeterRect(); SendMessage(hwndTT, TTM_SETTOOLINFO, NULL, (LPARAM) (LPTOOLINFO) &ti); if (!m_ToolTipTitle.empty()) { HICON hIcon = NULL; if (!m_ToolTipIcon.empty()) { if (!_wcsicmp(m_ToolTipIcon.c_str(), L"INFO")) { hIcon = (HICON) TTI_INFO; } else if (!_wcsicmp(m_ToolTipIcon.c_str(), L"WARNING")) { hIcon = (HICON) TTI_WARNING; } else if (!_wcsicmp(m_ToolTipIcon.c_str(), L"ERROR")) { hIcon = (HICON) TTI_ERROR; } else if (!_wcsicmp(m_ToolTipIcon.c_str(), L"QUESTION")) { hIcon = LoadIcon(NULL, IDI_QUESTION); } else if (!_wcsicmp(m_ToolTipIcon.c_str(), L"SHIELD")) { hIcon = LoadIcon(NULL, IDI_SHIELD); } else { hIcon = (HICON) LoadImage(NULL, m_ToolTipIcon.c_str(), IMAGE_ICON, 0, 0, LR_LOADFROMFILE); } } text = ReplaceMeasures(m_ToolTipTitle); SendMessage(hwndTT, TTM_SETTITLE, (WPARAM) hIcon, (LPARAM) text.c_str()); DestroyIcon(hIcon); } } /* ** Draw ** ** Draws the solid background & bevel if such are defined */ bool CMeter::Draw(Graphics& graphics) { if (IsHidden()) return false; graphics.SetInterpolationMode(InterpolationModeDefault); graphics.SetCompositingQuality(CompositingQualityDefault); if (m_AntiAlias) { //graphics.SetInterpolationMode(InterpolationModeBicubic); // Bicubic is not suitable for shrinking an image. graphics.SetSmoothingMode(SmoothingModeHighQuality); graphics.SetPixelOffsetMode(PixelOffsetModeHighQuality); } else { graphics.SetSmoothingMode(SmoothingModeNone); graphics.SetPixelOffsetMode(PixelOffsetModeDefault); } if (m_SolidColor.GetA() != 0 || m_SolidColor2.GetA() != 0) { int x = GetX(); int y = GetY(); if (m_SolidColor.GetValue() == m_SolidColor2.GetValue()) { SolidBrush solid(m_SolidColor); graphics.FillRectangle(&solid, x, y, m_W, m_H); } else { Rect r(x, y, m_W, m_H); LinearGradientBrush gradient(r, m_SolidColor, m_SolidColor2, m_SolidAngle, TRUE); graphics.FillRectangle(&gradient, r); } } if (m_SolidBevel != BEVELTYPE_NONE) { int x = GetX(); int y = GetY(); Pen light(Color(255, 255, 255, 255)); Pen dark(Color(255, 0, 0, 0)); if (m_SolidBevel == BEVELTYPE_DOWN) { light.SetColor(Color(255, 0, 0, 0)); dark.SetColor(Color(255, 255, 255, 255)); } // The bevel is drawn outside the meter Rect rect(x - 2, y - 2, m_W + 4, m_H + 4); DrawBevel(graphics, rect, light, dark); } return true; } /* ** DrawBevel ** ** Draws a bevel inside the given area */ void CMeter::DrawBevel(Graphics& graphics, Rect& rect, Pen& light, Pen& dark) { int l = rect.GetLeft(); int r = rect.GetRight() - 1; int t = rect.GetTop(); int b = rect.GetBottom() - 1; graphics.DrawLine(&light, l, t, l, b); graphics.DrawLine(&light, l, t, r, t); graphics.DrawLine(&light, l + 1, t + 1, l + 1, b - 1); graphics.DrawLine(&light, l + 1, t + 1, r - 1, l + 1); graphics.DrawLine(&dark, l, b, r, b); graphics.DrawLine(&dark, r, t, r, b); graphics.DrawLine(&dark, l + 1, b - 1, r - 1, b - 1); graphics.DrawLine(&dark, r - 1, t + 1, r - 1, b - 1); }