/* Copyright (C) 2001 Kimmo Pekkola This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "StdAfx.h" #include "MeasureCPU.h" #include "Rainmeter.h" #include "System.h" #include "Error.h" #define STATUS_SUCCESS 0 #define STATUS_INFO_LENGTH_MISMATCH 0xC0000004 #define SystemProcessorPerformanceInformation 8 //#define Li2Double(x) ((double)((x).HighPart) * 4.294967296E9 + (double)((x).LowPart)) #define Li2Double(x) ((double)((x).QuadPart)) #define Ft2Double(x) ((double)((x).dwHighDateTime) * 4.294967296E9 + (double)((x).dwLowDateTime)) PROCNTQSI CMeasureCPU::c_NtQuerySystemInformation = NULL; PROCGST CMeasureCPU::c_GetSystemTimes = NULL; int CMeasureCPU::c_NumOfProcessors = 0; ULONG CMeasureCPU::c_BufferSize = 0; // ntdll!NtQuerySystemInformation (NT specific!) // // The function copies the system information of the // specified type into a buffer // // NTSYSAPI // NTSTATUS // NTAPI // NtQuerySystemInformation( // IN UINT SystemInformationClass, // information type // OUT PVOID SystemInformation, // pointer to buffer // IN ULONG SystemInformationLength, // buffer size in bytes // OUT PULONG ReturnLength OPTIONAL // pointer to a 32-bit // // variable that receives // // the number of bytes // // written to the buffer // ); /* ** CMeasureCPU ** ** The constructor ** */ CMeasureCPU::CMeasureCPU(CMeterWindow* meterWindow) : CMeasure(meterWindow), m_FirstTime(true), m_Processor() { m_MaxValue = 100.0; if (c_NtQuerySystemInformation == NULL) { c_NtQuerySystemInformation = (PROCNTQSI)GetProcAddress(GetModuleHandle(L"ntdll"), "NtQuerySystemInformation"); } if (c_GetSystemTimes == NULL) { c_GetSystemTimes = (PROCGST)GetProcAddress(GetModuleHandle(L"kernel32"), "GetSystemTimes"); } if (c_NumOfProcessors == 0) { SYSTEM_INFO systemInfo = {0}; GetSystemInfo(&systemInfo); c_NumOfProcessors = (int)systemInfo.dwNumberOfProcessors; } } /* ** ~CMeasureCPU ** ** The destructor ** */ CMeasureCPU::~CMeasureCPU() { } /* ** ReadConfig ** ** Reads the measure specific configs. ** */ void CMeasureCPU::ReadConfig(CConfigParser& parser, const WCHAR* section) { CMeasure::ReadConfig(parser, section); int processor = parser.ReadInt(section, L"Processor", 0); if (processor < 0 || processor > c_NumOfProcessors) { LogWithArgs(LOG_WARNING, L"[%s] Invalid Processor: %i", section, processor); processor = 0; } if (processor != m_Processor) { m_Processor = processor; m_FirstTime = true; } if (m_FirstTime) { if (m_Processor == 0 && c_GetSystemTimes == NULL) { m_OldTime.assign(c_NumOfProcessors * 2, 0.0); } else { m_OldTime.assign(2, 0.0); } } } /* ** Update ** ** Updates the current CPU utilization value. ** */ bool CMeasureCPU::Update() { if (!CMeasure::PreUpdate()) return false; if (m_Processor == 0 && c_GetSystemTimes) { BOOL status; FILETIME ftIdleTime, ftKernelTime, ftUserTime; // get new CPU's idle/kernel/user time status = c_GetSystemTimes(&ftIdleTime, &ftKernelTime, &ftUserTime); if (status == 0) return false; CalcUsage(Ft2Double(ftIdleTime), Ft2Double(ftKernelTime) + Ft2Double(ftUserTime)); } else if (c_NtQuerySystemInformation) { LONG status; ULONG bufSize = c_BufferSize; BYTE* buf = (bufSize > 0) ? new BYTE[bufSize] : NULL; int loop = 0; do { ULONG size = 0; status = c_NtQuerySystemInformation(SystemProcessorPerformanceInformation, buf, bufSize, &size); if (status == STATUS_SUCCESS || status != STATUS_INFO_LENGTH_MISMATCH) break; else // status == STATUS_INFO_LENGTH_MISMATCH { if (size == 0) // Returned required buffer size is always 0 on Windows 2000/XP. { if (bufSize == 0) { bufSize = sizeof(SYSTEM_PROCESSOR_PERFORMANCE_INFORMATION) * c_NumOfProcessors; } else { bufSize += sizeof(SYSTEM_PROCESSOR_PERFORMANCE_INFORMATION); } } else { if (size != bufSize) { bufSize = size; } else // ?? { bufSize += sizeof(SYSTEM_PROCESSOR_PERFORMANCE_INFORMATION); } } delete [] buf; buf = new BYTE[bufSize]; } ++loop; } while (loop < 5); if (status != STATUS_SUCCESS) // failed { delete [] buf; return false; } if (bufSize != c_BufferSize) { // Store the new buffer size c_BufferSize = bufSize; } SYSTEM_PROCESSOR_PERFORMANCE_INFORMATION* systemPerfInfo = (SYSTEM_PROCESSOR_PERFORMANCE_INFORMATION*)buf; if (m_Processor == 0) { CalcAverageUsage(systemPerfInfo); } else { int processor = m_Processor - 1; CalcUsage(Li2Double(systemPerfInfo[processor].IdleTime), Li2Double(systemPerfInfo[processor].KernelTime) + Li2Double(systemPerfInfo[processor].UserTime)); } delete [] buf; } else { return false; } return PostUpdate(); } /* ** CalcUsage ** ** Calculates the current CPU utilization value. ** */ void CMeasureCPU::CalcUsage(double idleTime, double systemTime) { if (!m_FirstTime) { double dbCpuUsage; // CurrentCpuUsage% = 100 - ((IdleTime / SystemTime) * 100) dbCpuUsage = 100.0 - ((idleTime - m_OldTime[0]) / (systemTime - m_OldTime[1])) * 100.0; dbCpuUsage = min(dbCpuUsage, 100.0); m_Value = max(dbCpuUsage, 0.0); } else { m_FirstTime = false; } // store new CPU's idle and system time m_OldTime[0] = idleTime; m_OldTime[1] = systemTime; } /* ** CalcAverageUsage ** ** Calculates the current CPU average utilization value. ** This function is used if GetSystemTimes function is not available. ** */ void CMeasureCPU::CalcAverageUsage(SYSTEM_PROCESSOR_PERFORMANCE_INFORMATION* systemPerfInfo) { if (!m_FirstTime) { double dbIdleTimeDiff = 0, dbSystemTimeDiff = 0; double dbCpuUsage; for (int i = 0; i < c_NumOfProcessors; ++i) { double dbIdleTime, dbSystemTime; dbIdleTime = Li2Double(systemPerfInfo[i].IdleTime); dbSystemTime = Li2Double(systemPerfInfo[i].KernelTime) + Li2Double(systemPerfInfo[i].UserTime); dbIdleTimeDiff += dbIdleTime - m_OldTime[i * 2 + 0]; dbSystemTimeDiff += dbSystemTime - m_OldTime[i * 2 + 1]; // store new CPU's idle and system time m_OldTime[i * 2 + 0] = dbIdleTime; m_OldTime[i * 2 + 1] = dbSystemTime; } // CurrentCpuUsage% = 100 - ((IdleTime / SystemTime) * 100) dbCpuUsage = 100.0 - (dbIdleTimeDiff / dbSystemTimeDiff) * 100.0; dbCpuUsage = min(dbCpuUsage, 100.0); m_Value = max(dbCpuUsage, 0.0); } else { // store new CPU's idle and system time for (int i = 0; i < c_NumOfProcessors; ++i) { m_OldTime[i * 2 + 0] = Li2Double(systemPerfInfo[i].IdleTime); m_OldTime[i * 2 + 1] = Li2Double(systemPerfInfo[i].KernelTime) + Li2Double(systemPerfInfo[i].UserTime); } m_FirstTime = false; } }