New installer: Comment out unnecessary parts of the lzma files to reduce size

This commit is contained in:
Birunthan Mohanathas 2013-11-02 13:54:55 +02:00
parent e35a65eeaa
commit 5689604f36
13 changed files with 14 additions and 2012 deletions

View File

@ -7,11 +7,15 @@
#include "7z.h"
#ifdef _7ZIP_BCJ2_SUPPPORT
#include "Bcj2.h"
#include "Bra.h"
#endif
#include "CpuArch.h"
#include "LzmaDec.h"
#ifdef _7ZIP_LZMA2_SUPPPORT
#include "Lzma2Dec.h"
#endif
#ifdef _7ZIP_PPMD_SUPPPORT
#include "Ppmd7.h"
#endif
@ -249,7 +253,9 @@ static Bool IS_MAIN_METHOD(UInt32 m)
{
case k_Copy:
case k_LZMA:
#ifdef _7ZIP_LZMA2_SUPPPORT
case k_LZMA2:
#endif
#ifdef _7ZIP_PPMD_SUPPPORT
case k_PPMD:
#endif
@ -416,6 +422,7 @@ static SRes SzFolder_Decode2(const CSzFolder *folder, const UInt64 *packSizes,
#endif
}
}
#ifdef _7ZIP_BCJ2_SUPPPORT
else if (coder->MethodID == k_BCJ2)
{
UInt64 offset = GetSum(packSizes, 1);
@ -441,12 +448,14 @@ static SRes SzFolder_Decode2(const CSzFolder *folder, const UInt64 *packSizes,
outBuffer, outSize);
RINOK(res)
}
#endif
else
{
if (ci != 1)
return SZ_ERROR_UNSUPPORTED;
switch(coder->MethodID)
{
#ifdef _7ZIP_BCJ2_SUPPPORT
case k_BCJ:
{
UInt32 state;
@ -455,6 +464,7 @@ static SRes SzFolder_Decode2(const CSzFolder *folder, const UInt64 *packSizes,
break;
}
CASE_BRA_CONV(ARM)
#endif
default:
return SZ_ERROR_UNSUPPORTED;
}

View File

@ -9,6 +9,8 @@
#include "Types.h"
EXTERN_C_BEGIN
typedef struct
{
ILookInStream s;
@ -19,4 +21,6 @@ typedef struct
void MemInStream_Init(CMemInStream *p, const void *begin, size_t length);
EXTERN_C_END
#endif

View File

@ -1,132 +0,0 @@
/* Bcj2.c -- Converter for x86 code (BCJ2)
2008-10-04 : Igor Pavlov : Public domain */
#include "Bcj2.h"
#ifdef _LZMA_PROB32
#define CProb UInt32
#else
#define CProb UInt16
#endif
#define IsJcc(b0, b1) ((b0) == 0x0F && ((b1) & 0xF0) == 0x80)
#define IsJ(b0, b1) ((b1 & 0xFE) == 0xE8 || IsJcc(b0, b1))
#define kNumTopBits 24
#define kTopValue ((UInt32)1 << kNumTopBits)
#define kNumBitModelTotalBits 11
#define kBitModelTotal (1 << kNumBitModelTotalBits)
#define kNumMoveBits 5
#define RC_READ_BYTE (*buffer++)
#define RC_TEST { if (buffer == bufferLim) return SZ_ERROR_DATA; }
#define RC_INIT2 code = 0; range = 0xFFFFFFFF; \
{ int i; for (i = 0; i < 5; i++) { RC_TEST; code = (code << 8) | RC_READ_BYTE; }}
#define NORMALIZE if (range < kTopValue) { RC_TEST; range <<= 8; code = (code << 8) | RC_READ_BYTE; }
#define IF_BIT_0(p) ttt = *(p); bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
#define UPDATE_0(p) range = bound; *(p) = (CProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits)); NORMALIZE;
#define UPDATE_1(p) range -= bound; code -= bound; *(p) = (CProb)(ttt - (ttt >> kNumMoveBits)); NORMALIZE;
int Bcj2_Decode(
const Byte *buf0, SizeT size0,
const Byte *buf1, SizeT size1,
const Byte *buf2, SizeT size2,
const Byte *buf3, SizeT size3,
Byte *outBuf, SizeT outSize)
{
CProb p[256 + 2];
SizeT inPos = 0, outPos = 0;
const Byte *buffer, *bufferLim;
UInt32 range, code;
Byte prevByte = 0;
unsigned int i;
for (i = 0; i < sizeof(p) / sizeof(p[0]); i++)
p[i] = kBitModelTotal >> 1;
buffer = buf3;
bufferLim = buffer + size3;
RC_INIT2
if (outSize == 0)
return SZ_OK;
for (;;)
{
Byte b;
CProb *prob;
UInt32 bound;
UInt32 ttt;
SizeT limit = size0 - inPos;
if (outSize - outPos < limit)
limit = outSize - outPos;
while (limit != 0)
{
Byte b = buf0[inPos];
outBuf[outPos++] = b;
if (IsJ(prevByte, b))
break;
inPos++;
prevByte = b;
limit--;
}
if (limit == 0 || outPos == outSize)
break;
b = buf0[inPos++];
if (b == 0xE8)
prob = p + prevByte;
else if (b == 0xE9)
prob = p + 256;
else
prob = p + 257;
IF_BIT_0(prob)
{
UPDATE_0(prob)
prevByte = b;
}
else
{
UInt32 dest;
const Byte *v;
UPDATE_1(prob)
if (b == 0xE8)
{
v = buf1;
if (size1 < 4)
return SZ_ERROR_DATA;
buf1 += 4;
size1 -= 4;
}
else
{
v = buf2;
if (size2 < 4)
return SZ_ERROR_DATA;
buf2 += 4;
size2 -= 4;
}
dest = (((UInt32)v[0] << 24) | ((UInt32)v[1] << 16) |
((UInt32)v[2] << 8) | ((UInt32)v[3])) - ((UInt32)outPos + 4);
outBuf[outPos++] = (Byte)dest;
if (outPos == outSize)
break;
outBuf[outPos++] = (Byte)(dest >> 8);
if (outPos == outSize)
break;
outBuf[outPos++] = (Byte)(dest >> 16);
if (outPos == outSize)
break;
outBuf[outPos++] = prevByte = (Byte)(dest >> 24);
}
}
return (outPos == outSize) ? SZ_OK : SZ_ERROR_DATA;
}

View File

@ -1,38 +0,0 @@
/* Bcj2.h -- Converter for x86 code (BCJ2)
2009-02-07 : Igor Pavlov : Public domain */
#ifndef __BCJ2_H
#define __BCJ2_H
#include "Types.h"
#ifdef __cplusplus
extern "C" {
#endif
/*
Conditions:
outSize <= FullOutputSize,
where FullOutputSize is full size of output stream of x86_2 filter.
If buf0 overlaps outBuf, there are two required conditions:
1) (buf0 >= outBuf)
2) (buf0 + size0 >= outBuf + FullOutputSize).
Returns:
SZ_OK
SZ_ERROR_DATA - Data error
*/
int Bcj2_Decode(
const Byte *buf0, SizeT size0,
const Byte *buf1, SizeT size1,
const Byte *buf2, SizeT size2,
const Byte *buf3, SizeT size3,
Byte *outBuf, SizeT outSize);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -1,133 +0,0 @@
/* Bra.c -- Converters for RISC code
2010-04-16 : Igor Pavlov : Public domain */
#include "Bra.h"
SizeT ARM_Convert(Byte *data, SizeT size, UInt32 ip, int encoding)
{
SizeT i;
if (size < 4)
return 0;
size -= 4;
ip += 8;
for (i = 0; i <= size; i += 4)
{
if (data[i + 3] == 0xEB)
{
UInt32 dest;
UInt32 src = ((UInt32)data[i + 2] << 16) | ((UInt32)data[i + 1] << 8) | (data[i + 0]);
src <<= 2;
if (encoding)
dest = ip + (UInt32)i + src;
else
dest = src - (ip + (UInt32)i);
dest >>= 2;
data[i + 2] = (Byte)(dest >> 16);
data[i + 1] = (Byte)(dest >> 8);
data[i + 0] = (Byte)dest;
}
}
return i;
}
SizeT ARMT_Convert(Byte *data, SizeT size, UInt32 ip, int encoding)
{
SizeT i;
if (size < 4)
return 0;
size -= 4;
ip += 4;
for (i = 0; i <= size; i += 2)
{
if ((data[i + 1] & 0xF8) == 0xF0 &&
(data[i + 3] & 0xF8) == 0xF8)
{
UInt32 dest;
UInt32 src =
(((UInt32)data[i + 1] & 0x7) << 19) |
((UInt32)data[i + 0] << 11) |
(((UInt32)data[i + 3] & 0x7) << 8) |
(data[i + 2]);
src <<= 1;
if (encoding)
dest = ip + (UInt32)i + src;
else
dest = src - (ip + (UInt32)i);
dest >>= 1;
data[i + 1] = (Byte)(0xF0 | ((dest >> 19) & 0x7));
data[i + 0] = (Byte)(dest >> 11);
data[i + 3] = (Byte)(0xF8 | ((dest >> 8) & 0x7));
data[i + 2] = (Byte)dest;
i += 2;
}
}
return i;
}
SizeT PPC_Convert(Byte *data, SizeT size, UInt32 ip, int encoding)
{
SizeT i;
if (size < 4)
return 0;
size -= 4;
for (i = 0; i <= size; i += 4)
{
if ((data[i] >> 2) == 0x12 && (data[i + 3] & 3) == 1)
{
UInt32 src = ((UInt32)(data[i + 0] & 3) << 24) |
((UInt32)data[i + 1] << 16) |
((UInt32)data[i + 2] << 8) |
((UInt32)data[i + 3] & (~3));
UInt32 dest;
if (encoding)
dest = ip + (UInt32)i + src;
else
dest = src - (ip + (UInt32)i);
data[i + 0] = (Byte)(0x48 | ((dest >> 24) & 0x3));
data[i + 1] = (Byte)(dest >> 16);
data[i + 2] = (Byte)(dest >> 8);
data[i + 3] &= 0x3;
data[i + 3] |= dest;
}
}
return i;
}
SizeT SPARC_Convert(Byte *data, SizeT size, UInt32 ip, int encoding)
{
UInt32 i;
if (size < 4)
return 0;
size -= 4;
for (i = 0; i <= size; i += 4)
{
if ((data[i] == 0x40 && (data[i + 1] & 0xC0) == 0x00) ||
(data[i] == 0x7F && (data[i + 1] & 0xC0) == 0xC0))
{
UInt32 src =
((UInt32)data[i + 0] << 24) |
((UInt32)data[i + 1] << 16) |
((UInt32)data[i + 2] << 8) |
((UInt32)data[i + 3]);
UInt32 dest;
src <<= 2;
if (encoding)
dest = ip + i + src;
else
dest = src - (ip + i);
dest >>= 2;
dest = (((0 - ((dest >> 22) & 1)) << 22) & 0x3FFFFFFF) | (dest & 0x3FFFFF) | 0x40000000;
data[i + 0] = (Byte)(dest >> 24);
data[i + 1] = (Byte)(dest >> 16);
data[i + 2] = (Byte)(dest >> 8);
data[i + 3] = (Byte)dest;
}
}
return i;
}

View File

@ -1,68 +0,0 @@
/* Bra.h -- Branch converters for executables
2009-02-07 : Igor Pavlov : Public domain */
#ifndef __BRA_H
#define __BRA_H
#include "Types.h"
#ifdef __cplusplus
extern "C" {
#endif
/*
These functions convert relative addresses to absolute addresses
in CALL instructions to increase the compression ratio.
In:
data - data buffer
size - size of data
ip - current virtual Instruction Pinter (IP) value
state - state variable for x86 converter
encoding - 0 (for decoding), 1 (for encoding)
Out:
state - state variable for x86 converter
Returns:
The number of processed bytes. If you call these functions with multiple calls,
you must start next call with first byte after block of processed bytes.
Type Endian Alignment LookAhead
x86 little 1 4
ARMT little 2 2
ARM little 4 0
PPC big 4 0
SPARC big 4 0
IA64 little 16 0
size must be >= Alignment + LookAhead, if it's not last block.
If (size < Alignment + LookAhead), converter returns 0.
Example:
UInt32 ip = 0;
for ()
{
; size must be >= Alignment + LookAhead, if it's not last block
SizeT processed = Convert(data, size, ip, 1);
data += processed;
size -= processed;
ip += processed;
}
*/
#define x86_Convert_Init(state) { state = 0; }
SizeT x86_Convert(Byte *data, SizeT size, UInt32 ip, UInt32 *state, int encoding);
SizeT ARM_Convert(Byte *data, SizeT size, UInt32 ip, int encoding);
SizeT ARMT_Convert(Byte *data, SizeT size, UInt32 ip, int encoding);
SizeT PPC_Convert(Byte *data, SizeT size, UInt32 ip, int encoding);
SizeT SPARC_Convert(Byte *data, SizeT size, UInt32 ip, int encoding);
SizeT IA64_Convert(Byte *data, SizeT size, UInt32 ip, int encoding);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -1,85 +0,0 @@
/* Bra86.c -- Converter for x86 code (BCJ)
2008-10-04 : Igor Pavlov : Public domain */
#include "Bra.h"
#define Test86MSByte(b) ((b) == 0 || (b) == 0xFF)
const Byte kMaskToAllowedStatus[8] = {1, 1, 1, 0, 1, 0, 0, 0};
const Byte kMaskToBitNumber[8] = {0, 1, 2, 2, 3, 3, 3, 3};
SizeT x86_Convert(Byte *data, SizeT size, UInt32 ip, UInt32 *state, int encoding)
{
SizeT bufferPos = 0, prevPosT;
UInt32 prevMask = *state & 0x7;
if (size < 5)
return 0;
ip += 5;
prevPosT = (SizeT)0 - 1;
for (;;)
{
Byte *p = data + bufferPos;
Byte *limit = data + size - 4;
for (; p < limit; p++)
if ((*p & 0xFE) == 0xE8)
break;
bufferPos = (SizeT)(p - data);
if (p >= limit)
break;
prevPosT = bufferPos - prevPosT;
if (prevPosT > 3)
prevMask = 0;
else
{
prevMask = (prevMask << ((int)prevPosT - 1)) & 0x7;
if (prevMask != 0)
{
Byte b = p[4 - kMaskToBitNumber[prevMask]];
if (!kMaskToAllowedStatus[prevMask] || Test86MSByte(b))
{
prevPosT = bufferPos;
prevMask = ((prevMask << 1) & 0x7) | 1;
bufferPos++;
continue;
}
}
}
prevPosT = bufferPos;
if (Test86MSByte(p[4]))
{
UInt32 src = ((UInt32)p[4] << 24) | ((UInt32)p[3] << 16) | ((UInt32)p[2] << 8) | ((UInt32)p[1]);
UInt32 dest;
for (;;)
{
Byte b;
int index;
if (encoding)
dest = (ip + (UInt32)bufferPos) + src;
else
dest = src - (ip + (UInt32)bufferPos);
if (prevMask == 0)
break;
index = kMaskToBitNumber[prevMask] * 8;
b = (Byte)(dest >> (24 - index));
if (!Test86MSByte(b))
break;
src = dest ^ ((1 << (32 - index)) - 1);
}
p[4] = (Byte)(~(((dest >> 24) & 1) - 1));
p[3] = (Byte)(dest >> 16);
p[2] = (Byte)(dest >> 8);
p[1] = (Byte)dest;
bufferPos += 5;
}
else
{
prevMask = ((prevMask << 1) & 0x7) | 1;
bufferPos++;
}
}
prevPosT = bufferPos - prevPosT;
*state = ((prevPosT > 3) ? 0 : ((prevMask << ((int)prevPosT - 1)) & 0x7));
return bufferPos;
}

View File

@ -1,356 +0,0 @@
/* Lzma2Dec.c -- LZMA2 Decoder
2009-05-03 : Igor Pavlov : Public domain */
/* #define SHOW_DEBUG_INFO */
#ifdef SHOW_DEBUG_INFO
#include <stdio.h>
#endif
#include <string.h>
#include "Lzma2Dec.h"
/*
00000000 - EOS
00000001 U U - Uncompressed Reset Dic
00000010 U U - Uncompressed No Reset
100uuuuu U U P P - LZMA no reset
101uuuuu U U P P - LZMA reset state
110uuuuu U U P P S - LZMA reset state + new prop
111uuuuu U U P P S - LZMA reset state + new prop + reset dic
u, U - Unpack Size
P - Pack Size
S - Props
*/
#define LZMA2_CONTROL_LZMA (1 << 7)
#define LZMA2_CONTROL_COPY_NO_RESET 2
#define LZMA2_CONTROL_COPY_RESET_DIC 1
#define LZMA2_CONTROL_EOF 0
#define LZMA2_IS_UNCOMPRESSED_STATE(p) (((p)->control & LZMA2_CONTROL_LZMA) == 0)
#define LZMA2_GET_LZMA_MODE(p) (((p)->control >> 5) & 3)
#define LZMA2_IS_THERE_PROP(mode) ((mode) >= 2)
#define LZMA2_LCLP_MAX 4
#define LZMA2_DIC_SIZE_FROM_PROP(p) (((UInt32)2 | ((p) & 1)) << ((p) / 2 + 11))
#ifdef SHOW_DEBUG_INFO
#define PRF(x) x
#else
#define PRF(x)
#endif
typedef enum
{
LZMA2_STATE_CONTROL,
LZMA2_STATE_UNPACK0,
LZMA2_STATE_UNPACK1,
LZMA2_STATE_PACK0,
LZMA2_STATE_PACK1,
LZMA2_STATE_PROP,
LZMA2_STATE_DATA,
LZMA2_STATE_DATA_CONT,
LZMA2_STATE_FINISHED,
LZMA2_STATE_ERROR
} ELzma2State;
static SRes Lzma2Dec_GetOldProps(Byte prop, Byte *props)
{
UInt32 dicSize;
if (prop > 40)
return SZ_ERROR_UNSUPPORTED;
dicSize = (prop == 40) ? 0xFFFFFFFF : LZMA2_DIC_SIZE_FROM_PROP(prop);
props[0] = (Byte)LZMA2_LCLP_MAX;
props[1] = (Byte)(dicSize);
props[2] = (Byte)(dicSize >> 8);
props[3] = (Byte)(dicSize >> 16);
props[4] = (Byte)(dicSize >> 24);
return SZ_OK;
}
SRes Lzma2Dec_AllocateProbs(CLzma2Dec *p, Byte prop, ISzAlloc *alloc)
{
Byte props[LZMA_PROPS_SIZE];
RINOK(Lzma2Dec_GetOldProps(prop, props));
return LzmaDec_AllocateProbs(&p->decoder, props, LZMA_PROPS_SIZE, alloc);
}
SRes Lzma2Dec_Allocate(CLzma2Dec *p, Byte prop, ISzAlloc *alloc)
{
Byte props[LZMA_PROPS_SIZE];
RINOK(Lzma2Dec_GetOldProps(prop, props));
return LzmaDec_Allocate(&p->decoder, props, LZMA_PROPS_SIZE, alloc);
}
void Lzma2Dec_Init(CLzma2Dec *p)
{
p->state = LZMA2_STATE_CONTROL;
p->needInitDic = True;
p->needInitState = True;
p->needInitProp = True;
LzmaDec_Init(&p->decoder);
}
static ELzma2State Lzma2Dec_UpdateState(CLzma2Dec *p, Byte b)
{
switch(p->state)
{
case LZMA2_STATE_CONTROL:
p->control = b;
PRF(printf("\n %4X ", p->decoder.dicPos));
PRF(printf(" %2X", b));
if (p->control == 0)
return LZMA2_STATE_FINISHED;
if (LZMA2_IS_UNCOMPRESSED_STATE(p))
{
if ((p->control & 0x7F) > 2)
return LZMA2_STATE_ERROR;
p->unpackSize = 0;
}
else
p->unpackSize = (UInt32)(p->control & 0x1F) << 16;
return LZMA2_STATE_UNPACK0;
case LZMA2_STATE_UNPACK0:
p->unpackSize |= (UInt32)b << 8;
return LZMA2_STATE_UNPACK1;
case LZMA2_STATE_UNPACK1:
p->unpackSize |= (UInt32)b;
p->unpackSize++;
PRF(printf(" %8d", p->unpackSize));
return (LZMA2_IS_UNCOMPRESSED_STATE(p)) ? LZMA2_STATE_DATA : LZMA2_STATE_PACK0;
case LZMA2_STATE_PACK0:
p->packSize = (UInt32)b << 8;
return LZMA2_STATE_PACK1;
case LZMA2_STATE_PACK1:
p->packSize |= (UInt32)b;
p->packSize++;
PRF(printf(" %8d", p->packSize));
return LZMA2_IS_THERE_PROP(LZMA2_GET_LZMA_MODE(p)) ? LZMA2_STATE_PROP:
(p->needInitProp ? LZMA2_STATE_ERROR : LZMA2_STATE_DATA);
case LZMA2_STATE_PROP:
{
int lc, lp;
if (b >= (9 * 5 * 5))
return LZMA2_STATE_ERROR;
lc = b % 9;
b /= 9;
p->decoder.prop.pb = b / 5;
lp = b % 5;
if (lc + lp > LZMA2_LCLP_MAX)
return LZMA2_STATE_ERROR;
p->decoder.prop.lc = lc;
p->decoder.prop.lp = lp;
p->needInitProp = False;
return LZMA2_STATE_DATA;
}
}
return LZMA2_STATE_ERROR;
}
static void LzmaDec_UpdateWithUncompressed(CLzmaDec *p, const Byte *src, SizeT size)
{
memcpy(p->dic + p->dicPos, src, size);
p->dicPos += size;
if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= size)
p->checkDicSize = p->prop.dicSize;
p->processedPos += (UInt32)size;
}
void LzmaDec_InitDicAndState(CLzmaDec *p, Bool initDic, Bool initState);
SRes Lzma2Dec_DecodeToDic(CLzma2Dec *p, SizeT dicLimit,
const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
{
SizeT inSize = *srcLen;
*srcLen = 0;
*status = LZMA_STATUS_NOT_SPECIFIED;
while (p->state != LZMA2_STATE_FINISHED)
{
SizeT dicPos = p->decoder.dicPos;
if (p->state == LZMA2_STATE_ERROR)
return SZ_ERROR_DATA;
if (dicPos == dicLimit && finishMode == LZMA_FINISH_ANY)
{
*status = LZMA_STATUS_NOT_FINISHED;
return SZ_OK;
}
if (p->state != LZMA2_STATE_DATA && p->state != LZMA2_STATE_DATA_CONT)
{
if (*srcLen == inSize)
{
*status = LZMA_STATUS_NEEDS_MORE_INPUT;
return SZ_OK;
}
(*srcLen)++;
p->state = Lzma2Dec_UpdateState(p, *src++);
continue;
}
{
SizeT destSizeCur = dicLimit - dicPos;
SizeT srcSizeCur = inSize - *srcLen;
ELzmaFinishMode curFinishMode = LZMA_FINISH_ANY;
if (p->unpackSize <= destSizeCur)
{
destSizeCur = (SizeT)p->unpackSize;
curFinishMode = LZMA_FINISH_END;
}
if (LZMA2_IS_UNCOMPRESSED_STATE(p))
{
if (*srcLen == inSize)
{
*status = LZMA_STATUS_NEEDS_MORE_INPUT;
return SZ_OK;
}
if (p->state == LZMA2_STATE_DATA)
{
Bool initDic = (p->control == LZMA2_CONTROL_COPY_RESET_DIC);
if (initDic)
p->needInitProp = p->needInitState = True;
else if (p->needInitDic)
return SZ_ERROR_DATA;
p->needInitDic = False;
LzmaDec_InitDicAndState(&p->decoder, initDic, False);
}
if (srcSizeCur > destSizeCur)
srcSizeCur = destSizeCur;
if (srcSizeCur == 0)
return SZ_ERROR_DATA;
LzmaDec_UpdateWithUncompressed(&p->decoder, src, srcSizeCur);
src += srcSizeCur;
*srcLen += srcSizeCur;
p->unpackSize -= (UInt32)srcSizeCur;
p->state = (p->unpackSize == 0) ? LZMA2_STATE_CONTROL : LZMA2_STATE_DATA_CONT;
}
else
{
SizeT outSizeProcessed;
SRes res;
if (p->state == LZMA2_STATE_DATA)
{
int mode = LZMA2_GET_LZMA_MODE(p);
Bool initDic = (mode == 3);
Bool initState = (mode > 0);
if ((!initDic && p->needInitDic) || (!initState && p->needInitState))
return SZ_ERROR_DATA;
LzmaDec_InitDicAndState(&p->decoder, initDic, initState);
p->needInitDic = False;
p->needInitState = False;
p->state = LZMA2_STATE_DATA_CONT;
}
if (srcSizeCur > p->packSize)
srcSizeCur = (SizeT)p->packSize;
res = LzmaDec_DecodeToDic(&p->decoder, dicPos + destSizeCur, src, &srcSizeCur, curFinishMode, status);
src += srcSizeCur;
*srcLen += srcSizeCur;
p->packSize -= (UInt32)srcSizeCur;
outSizeProcessed = p->decoder.dicPos - dicPos;
p->unpackSize -= (UInt32)outSizeProcessed;
RINOK(res);
if (*status == LZMA_STATUS_NEEDS_MORE_INPUT)
return res;
if (srcSizeCur == 0 && outSizeProcessed == 0)
{
if (*status != LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK ||
p->unpackSize != 0 || p->packSize != 0)
return SZ_ERROR_DATA;
p->state = LZMA2_STATE_CONTROL;
}
if (*status == LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK)
*status = LZMA_STATUS_NOT_FINISHED;
}
}
}
*status = LZMA_STATUS_FINISHED_WITH_MARK;
return SZ_OK;
}
SRes Lzma2Dec_DecodeToBuf(CLzma2Dec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
{
SizeT outSize = *destLen, inSize = *srcLen;
*srcLen = *destLen = 0;
for (;;)
{
SizeT srcSizeCur = inSize, outSizeCur, dicPos;
ELzmaFinishMode curFinishMode;
SRes res;
if (p->decoder.dicPos == p->decoder.dicBufSize)
p->decoder.dicPos = 0;
dicPos = p->decoder.dicPos;
if (outSize > p->decoder.dicBufSize - dicPos)
{
outSizeCur = p->decoder.dicBufSize;
curFinishMode = LZMA_FINISH_ANY;
}
else
{
outSizeCur = dicPos + outSize;
curFinishMode = finishMode;
}
res = Lzma2Dec_DecodeToDic(p, outSizeCur, src, &srcSizeCur, curFinishMode, status);
src += srcSizeCur;
inSize -= srcSizeCur;
*srcLen += srcSizeCur;
outSizeCur = p->decoder.dicPos - dicPos;
memcpy(dest, p->decoder.dic + dicPos, outSizeCur);
dest += outSizeCur;
outSize -= outSizeCur;
*destLen += outSizeCur;
if (res != 0)
return res;
if (outSizeCur == 0 || outSize == 0)
return SZ_OK;
}
}
SRes Lzma2Decode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
Byte prop, ELzmaFinishMode finishMode, ELzmaStatus *status, ISzAlloc *alloc)
{
CLzma2Dec decoder;
SRes res;
SizeT outSize = *destLen, inSize = *srcLen;
Byte props[LZMA_PROPS_SIZE];
Lzma2Dec_Construct(&decoder);
*destLen = *srcLen = 0;
*status = LZMA_STATUS_NOT_SPECIFIED;
decoder.decoder.dic = dest;
decoder.decoder.dicBufSize = outSize;
RINOK(Lzma2Dec_GetOldProps(prop, props));
RINOK(LzmaDec_AllocateProbs(&decoder.decoder, props, LZMA_PROPS_SIZE, alloc));
*srcLen = inSize;
res = Lzma2Dec_DecodeToDic(&decoder, outSize, src, srcLen, finishMode, status);
*destLen = decoder.decoder.dicPos;
if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT)
res = SZ_ERROR_INPUT_EOF;
LzmaDec_FreeProbs(&decoder.decoder, alloc);
return res;
}

View File

@ -1,84 +0,0 @@
/* Lzma2Dec.h -- LZMA2 Decoder
2009-05-03 : Igor Pavlov : Public domain */
#ifndef __LZMA2_DEC_H
#define __LZMA2_DEC_H
#include "LzmaDec.h"
#ifdef __cplusplus
extern "C" {
#endif
/* ---------- State Interface ---------- */
typedef struct
{
CLzmaDec decoder;
UInt32 packSize;
UInt32 unpackSize;
int state;
Byte control;
Bool needInitDic;
Bool needInitState;
Bool needInitProp;
} CLzma2Dec;
#define Lzma2Dec_Construct(p) LzmaDec_Construct(&(p)->decoder)
#define Lzma2Dec_FreeProbs(p, alloc) LzmaDec_FreeProbs(&(p)->decoder, alloc);
#define Lzma2Dec_Free(p, alloc) LzmaDec_Free(&(p)->decoder, alloc);
SRes Lzma2Dec_AllocateProbs(CLzma2Dec *p, Byte prop, ISzAlloc *alloc);
SRes Lzma2Dec_Allocate(CLzma2Dec *p, Byte prop, ISzAlloc *alloc);
void Lzma2Dec_Init(CLzma2Dec *p);
/*
finishMode:
It has meaning only if the decoding reaches output limit (*destLen or dicLimit).
LZMA_FINISH_ANY - use smallest number of input bytes
LZMA_FINISH_END - read EndOfStream marker after decoding
Returns:
SZ_OK
status:
LZMA_STATUS_FINISHED_WITH_MARK
LZMA_STATUS_NOT_FINISHED
LZMA_STATUS_NEEDS_MORE_INPUT
SZ_ERROR_DATA - Data error
*/
SRes Lzma2Dec_DecodeToDic(CLzma2Dec *p, SizeT dicLimit,
const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
SRes Lzma2Dec_DecodeToBuf(CLzma2Dec *p, Byte *dest, SizeT *destLen,
const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
/* ---------- One Call Interface ---------- */
/*
finishMode:
It has meaning only if the decoding reaches output limit (*destLen).
LZMA_FINISH_ANY - use smallest number of input bytes
LZMA_FINISH_END - read EndOfStream marker after decoding
Returns:
SZ_OK
status:
LZMA_STATUS_FINISHED_WITH_MARK
LZMA_STATUS_NOT_FINISHED
SZ_ERROR_DATA - Data error
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_UNSUPPORTED - Unsupported properties
SZ_ERROR_INPUT_EOF - It needs more bytes in input buffer (src).
*/
SRes Lzma2Decode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
Byte prop, ELzmaFinishMode finishMode, ELzmaStatus *status, ISzAlloc *alloc);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -1,81 +0,0 @@
/* Ppmd.h -- PPMD codec common code
2010-03-12 : Igor Pavlov : Public domain
This code is based on PPMd var.H (2001): Dmitry Shkarin : Public domain */
#ifndef __PPMD_H
#define __PPMD_H
#include "Types.h"
#include "CpuArch.h"
EXTERN_C_BEGIN
#ifdef MY_CPU_32BIT
#define PPMD_32BIT
#endif
#define PPMD_INT_BITS 7
#define PPMD_PERIOD_BITS 7
#define PPMD_BIN_SCALE (1 << (PPMD_INT_BITS + PPMD_PERIOD_BITS))
#define PPMD_GET_MEAN_SPEC(summ, shift, round) (((summ) + (1 << ((shift) - (round)))) >> (shift))
#define PPMD_GET_MEAN(summ) PPMD_GET_MEAN_SPEC((summ), PPMD_PERIOD_BITS, 2)
#define PPMD_UPDATE_PROB_0(prob) ((prob) + (1 << PPMD_INT_BITS) - PPMD_GET_MEAN(prob))
#define PPMD_UPDATE_PROB_1(prob) ((prob) - PPMD_GET_MEAN(prob))
#define PPMD_N1 4
#define PPMD_N2 4
#define PPMD_N3 4
#define PPMD_N4 ((128 + 3 - 1 * PPMD_N1 - 2 * PPMD_N2 - 3 * PPMD_N3) / 4)
#define PPMD_NUM_INDEXES (PPMD_N1 + PPMD_N2 + PPMD_N3 + PPMD_N4)
/* SEE-contexts for PPM-contexts with masked symbols */
typedef struct
{
UInt16 Summ; /* Freq */
Byte Shift; /* Speed of Freq change; low Shift is for fast change */
Byte Count; /* Count to next change of Shift */
} CPpmd_See;
#define Ppmd_See_Update(p) if ((p)->Shift < PPMD_PERIOD_BITS && --(p)->Count == 0) \
{ (p)->Summ <<= 1; (p)->Count = (Byte)(3 << (p)->Shift++); }
typedef struct
{
Byte Symbol;
Byte Freq;
UInt16 SuccessorLow;
UInt16 SuccessorHigh;
} CPpmd_State;
typedef
#ifdef PPMD_32BIT
CPpmd_State *
#else
UInt32
#endif
CPpmd_State_Ref;
typedef
#ifdef PPMD_32BIT
void *
#else
UInt32
#endif
CPpmd_Void_Ref;
typedef
#ifdef PPMD_32BIT
Byte *
#else
UInt32
#endif
CPpmd_Byte_Ref;
#define PPMD_SetAllBitsIn256Bytes(p) \
{ unsigned i; for (i = 0; i < 256 / sizeof(p[0]); i += 8) { \
p[i+7] = p[i+6] = p[i+5] = p[i+4] = p[i+3] = p[i+2] = p[i+1] = p[i+0] = ~(size_t)0; }}
EXTERN_C_END
#endif

View File

@ -1,708 +0,0 @@
/* Ppmd7.c -- PPMdH codec
2010-03-12 : Igor Pavlov : Public domain
This code is based on PPMd var.H (2001): Dmitry Shkarin : Public domain */
#include <memory.h>
#include "Ppmd7.h"
const Byte PPMD7_kExpEscape[16] = { 25, 14, 9, 7, 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 2 };
static const UInt16 kInitBinEsc[] = { 0x3CDD, 0x1F3F, 0x59BF, 0x48F3, 0x64A1, 0x5ABC, 0x6632, 0x6051};
#define MAX_FREQ 124
#define UNIT_SIZE 12
#define U2B(nu) ((UInt32)(nu) * UNIT_SIZE)
#define U2I(nu) (p->Units2Indx[(nu) - 1])
#define I2U(indx) (p->Indx2Units[indx])
#ifdef PPMD_32BIT
#define REF(ptr) (ptr)
#else
#define REF(ptr) ((UInt32)((Byte *)(ptr) - (p)->Base))
#endif
#define STATS_REF(ptr) ((CPpmd_State_Ref)REF(ptr))
#define CTX(ref) ((CPpmd7_Context *)Ppmd7_GetContext(p, ref))
#define STATS(ctx) Ppmd7_GetStats(p, ctx)
#define ONE_STATE(ctx) Ppmd7Context_OneState(ctx)
#define SUFFIX(ctx) CTX((ctx)->Suffix)
typedef CPpmd7_Context * CTX_PTR;
struct CPpmd7_Node_;
typedef
#ifdef PPMD_32BIT
struct CPpmd7_Node_ *
#else
UInt32
#endif
CPpmd7_Node_Ref;
typedef struct CPpmd7_Node_
{
UInt16 Stamp; /* must be at offset 0 as CPpmd7_Context::NumStats. Stamp=0 means free */
UInt16 NU;
CPpmd7_Node_Ref Next; /* must be at offset >= 4 */
CPpmd7_Node_Ref Prev;
} CPpmd7_Node;
#ifdef PPMD_32BIT
#define NODE(ptr) (ptr)
#else
#define NODE(offs) ((CPpmd7_Node *)(p->Base + (offs)))
#endif
void Ppmd7_Construct(CPpmd7 *p)
{
unsigned i, k, m;
p->Base = 0;
for (i = 0, k = 0; i < PPMD_NUM_INDEXES; i++)
{
unsigned step = (i >= 12 ? 4 : (i >> 2) + 1);
do { p->Units2Indx[k++] = (Byte)i; } while(--step);
p->Indx2Units[i] = (Byte)k;
}
p->NS2BSIndx[0] = (0 << 1);
p->NS2BSIndx[1] = (1 << 1);
memset(p->NS2BSIndx + 2, (2 << 1), 9);
memset(p->NS2BSIndx + 11, (3 << 1), 256 - 11);
for (i = 0; i < 3; i++)
p->NS2Indx[i] = (Byte)i;
for (m = i, k = 1; i < 256; i++)
{
p->NS2Indx[i] = (Byte)m;
if (--k == 0)
k = (++m) - 2;
}
memset(p->HB2Flag, 0, 0x40);
memset(p->HB2Flag + 0x40, 8, 0x100 - 0x40);
}
void Ppmd7_Free(CPpmd7 *p, ISzAlloc *alloc)
{
alloc->Free(alloc, p->Base);
p->Size = 0;
p->Base = 0;
}
Bool Ppmd7_Alloc(CPpmd7 *p, UInt32 size, ISzAlloc *alloc)
{
if (p->Base == 0 || p->Size != size)
{
Ppmd7_Free(p, alloc);
p->AlignOffset =
#ifdef PPMD_32BIT
(4 - size) & 3;
#else
4 - (size & 3);
#endif
if ((p->Base = (Byte *)alloc->Alloc(alloc, p->AlignOffset + size
#ifndef PPMD_32BIT
+ UNIT_SIZE
#endif
)) == 0)
return False;
p->Size = size;
}
return True;
}
static void InsertNode(CPpmd7 *p, void *node, unsigned indx)
{
*((CPpmd_Void_Ref *)node) = p->FreeList[indx];
p->FreeList[indx] = REF(node);
}
static void *RemoveNode(CPpmd7 *p, unsigned indx)
{
CPpmd_Void_Ref *node = (CPpmd_Void_Ref *)Ppmd7_GetPtr(p, p->FreeList[indx]);
p->FreeList[indx] = *node;
return node;
}
static void SplitBlock(CPpmd7 *p, void *ptr, unsigned oldIndx, unsigned newIndx)
{
unsigned i, nu = I2U(oldIndx) - I2U(newIndx);
ptr = (Byte *)ptr + U2B(I2U(newIndx));
if (I2U(i = U2I(nu)) != nu)
{
unsigned k = I2U(--i);
InsertNode(p, ((Byte *)ptr) + U2B(k), nu - k - 1);
}
InsertNode(p, ptr, i);
}
static void GlueFreeBlocks(CPpmd7 *p)
{
#ifdef PPMD_32BIT
CPpmd7_Node headItem;
CPpmd7_Node_Ref head = &headItem;
#else
CPpmd7_Node_Ref head = p->AlignOffset + p->Size;
#endif
CPpmd7_Node_Ref n = head;
unsigned i;
p->GlueCount = 255;
/* create doubly-linked list of free blocks */
for (i = 0; i < PPMD_NUM_INDEXES; i++)
{
UInt16 nu = I2U(i);
CPpmd7_Node_Ref next = (CPpmd7_Node_Ref)p->FreeList[i];
p->FreeList[i] = 0;
while (next != 0)
{
CPpmd7_Node *node = NODE(next);
node->Next = n;
n = NODE(n)->Prev = next;
next = *(const CPpmd7_Node_Ref *)node;
node->Stamp = 0;
node->NU = (UInt16)nu;
}
}
NODE(head)->Stamp = 1;
NODE(head)->Next = n;
NODE(n)->Prev = head;
if (p->LoUnit != p->HiUnit)
((CPpmd7_Node *)p->LoUnit)->Stamp = 1;
/* Glue free blocks */
while (n != head)
{
CPpmd7_Node *node = NODE(n);
UInt32 nu = (UInt32)node->NU;
for (;;)
{
CPpmd7_Node *node2 = NODE(n) + nu;
nu += node2->NU;
if (node2->Stamp != 0 || nu >= 0x10000)
break;
NODE(node2->Prev)->Next = node2->Next;
NODE(node2->Next)->Prev = node2->Prev;
node->NU = (UInt16)nu;
}
n = node->Next;
}
/* Fill lists of free blocks */
for (n = NODE(head)->Next; n != head;)
{
CPpmd7_Node *node = NODE(n);
unsigned nu;
CPpmd7_Node_Ref next = node->Next;
for (nu = node->NU; nu > 128; nu -= 128, node += 128)
InsertNode(p, node, PPMD_NUM_INDEXES - 1);
if (I2U(i = U2I(nu)) != nu)
{
unsigned k = I2U(--i);
InsertNode(p, node + k, nu - k - 1);
}
InsertNode(p, node, i);
n = next;
}
}
static void *AllocUnitsRare(CPpmd7 *p, unsigned indx)
{
unsigned i;
void *retVal;
if (p->GlueCount == 0)
{
GlueFreeBlocks(p);
if (p->FreeList[indx] != 0)
return RemoveNode(p, indx);
}
i = indx;
do
{
if (++i == PPMD_NUM_INDEXES)
{
UInt32 numBytes = U2B(I2U(indx));
p->GlueCount--;
return ((UInt32)(p->UnitsStart - p->Text) > numBytes) ? (p->UnitsStart -= numBytes) : (NULL);
}
}
while (p->FreeList[i] == 0);
retVal = RemoveNode(p, i);
SplitBlock(p, retVal, i, indx);
return retVal;
}
static void *AllocUnits(CPpmd7 *p, unsigned indx)
{
UInt32 numBytes;
if (p->FreeList[indx] != 0)
return RemoveNode(p, indx);
numBytes = U2B(I2U(indx));
if (numBytes <= (UInt32)(p->HiUnit - p->LoUnit))
{
void *retVal = p->LoUnit;
p->LoUnit += numBytes;
return retVal;
}
return AllocUnitsRare(p, indx);
}
#define MyMem12Cpy(dest, src, num) \
{ UInt32 *d = (UInt32 *)dest; const UInt32 *s = (const UInt32 *)src; UInt32 n = num; \
do { d[0] = s[0]; d[1] = s[1]; d[2] = s[2]; s += 3; d += 3; } while(--n); }
static void *ShrinkUnits(CPpmd7 *p, void *oldPtr, unsigned oldNU, unsigned newNU)
{
unsigned i0 = U2I(oldNU);
unsigned i1 = U2I(newNU);
if (i0 == i1)
return oldPtr;
if (p->FreeList[i1] != 0)
{
void *ptr = RemoveNode(p, i1);
MyMem12Cpy(ptr, oldPtr, newNU);
InsertNode(p, oldPtr, i0);
return ptr;
}
SplitBlock(p, oldPtr, i0, i1);
return oldPtr;
}
#define SUCCESSOR(p) ((CPpmd_Void_Ref)((p)->SuccessorLow | ((UInt32)(p)->SuccessorHigh << 16)))
static void SetSuccessor(CPpmd_State *p, CPpmd_Void_Ref v)
{
(p)->SuccessorLow = (UInt16)((UInt32)(v) & 0xFFFF);
(p)->SuccessorHigh = (UInt16)(((UInt32)(v) >> 16) & 0xFFFF);
}
static void RestartModel(CPpmd7 *p)
{
unsigned i, k, m;
memset(p->FreeList, 0, sizeof(p->FreeList));
p->Text = p->Base + p->AlignOffset;
p->HiUnit = p->Text + p->Size;
p->LoUnit = p->UnitsStart = p->HiUnit - p->Size / 8 / UNIT_SIZE * 7 * UNIT_SIZE;
p->GlueCount = 0;
p->OrderFall = p->MaxOrder;
p->RunLength = p->InitRL = -(Int32)((p->MaxOrder < 12) ? p->MaxOrder : 12) - 1;
p->PrevSuccess = 0;
p->MinContext = p->MaxContext = (CTX_PTR)(p->HiUnit -= UNIT_SIZE); /* AllocContext(p); */
p->MinContext->Suffix = 0;
p->MinContext->NumStats = 256;
p->MinContext->SummFreq = 256 + 1;
p->FoundState = (CPpmd_State *)p->LoUnit; /* AllocUnits(p, PPMD_NUM_INDEXES - 1); */
p->LoUnit += U2B(256 / 2);
p->MinContext->Stats = REF(p->FoundState);
for (i = 0; i < 256; i++)
{
CPpmd_State *s = &p->FoundState[i];
s->Symbol = (Byte)i;
s->Freq = 1;
SetSuccessor(s, 0);
}
for (i = 0; i < 128; i++)
for (k = 0; k < 8; k++)
{
UInt16 *dest = p->BinSumm[i] + k;
UInt16 val = (UInt16)(PPMD_BIN_SCALE - kInitBinEsc[k] / (i + 2));
for (m = 0; m < 64; m += 8)
dest[m] = val;
}
for (i = 0; i < 25; i++)
for (k = 0; k < 16; k++)
{
CPpmd_See *s = &p->See[i][k];
s->Summ = (UInt16)((5 * i + 10) << (s->Shift = PPMD_PERIOD_BITS - 4));
s->Count = 4;
}
}
void Ppmd7_Init(CPpmd7 *p, unsigned maxOrder)
{
p->MaxOrder = maxOrder;
RestartModel(p);
p->DummySee.Shift = PPMD_PERIOD_BITS;
p->DummySee.Summ = 0; /* unused */
p->DummySee.Count = 64; /* unused */
}
static CTX_PTR CreateSuccessors(CPpmd7 *p, Bool skip)
{
CPpmd_State upState;
CTX_PTR c = p->MinContext;
CPpmd_Byte_Ref upBranch = (CPpmd_Byte_Ref)SUCCESSOR(p->FoundState);
CPpmd_State *ps[PPMD7_MAX_ORDER];
unsigned numPs = 0;
if (!skip)
ps[numPs++] = p->FoundState;
while (c->Suffix)
{
CPpmd_Void_Ref successor;
CPpmd_State *s;
c = SUFFIX(c);
if (c->NumStats != 1)
{
for (s = STATS(c); s->Symbol != p->FoundState->Symbol; s++);
}
else
s = ONE_STATE(c);
successor = SUCCESSOR(s);
if (successor != upBranch)
{
c = CTX(successor);
if (numPs == 0)
return c;
break;
}
ps[numPs++] = s;
}
upState.Symbol = *(const Byte *)Ppmd7_GetPtr(p, upBranch);
SetSuccessor(&upState, upBranch + 1);
if (c->NumStats == 1)
upState.Freq = ONE_STATE(c)->Freq;
else
{
UInt32 cf, s0;
CPpmd_State *s;
for (s = STATS(c); s->Symbol != upState.Symbol; s++);
cf = s->Freq - 1;
s0 = c->SummFreq - c->NumStats - cf;
upState.Freq = (Byte)(1 + ((2 * cf <= s0) ? (5 * cf > s0) : ((2 * cf + 3 * s0 - 1) / (2 * s0))));
}
do
{
/* Create Child */
CTX_PTR c1; /* = AllocContext(p); */
if (p->HiUnit != p->LoUnit)
c1 = (CTX_PTR)(p->HiUnit -= UNIT_SIZE);
else if (p->FreeList[0] != 0)
c1 = (CTX_PTR)RemoveNode(p, 0);
else
{
c1 = (CTX_PTR)AllocUnitsRare(p, 0);
if (!c1)
return NULL;
}
c1->NumStats = 1;
*ONE_STATE(c1) = upState;
c1->Suffix = REF(c);
SetSuccessor(ps[--numPs], REF(c1));
c = c1;
}
while (numPs != 0);
return c;
}
static void SwapStates(CPpmd_State *t1, CPpmd_State *t2)
{
CPpmd_State tmp = *t1;
*t1 = *t2;
*t2 = tmp;
}
static void UpdateModel(CPpmd7 *p)
{
CPpmd_Void_Ref successor, fSuccessor = SUCCESSOR(p->FoundState);
CTX_PTR c;
unsigned s0, ns;
if (p->FoundState->Freq < MAX_FREQ / 4 && p->MinContext->Suffix != 0)
{
c = SUFFIX(p->MinContext);
if (c->NumStats == 1)
{
CPpmd_State *s = ONE_STATE(c);
if (s->Freq < 32)
s->Freq++;
}
else
{
CPpmd_State *s = STATS(c);
if (s->Symbol != p->FoundState->Symbol)
{
do { s++; } while (s->Symbol != p->FoundState->Symbol);
if (s[0].Freq >= s[-1].Freq)
{
SwapStates(&s[0], &s[-1]);
s--;
}
}
if (s->Freq < MAX_FREQ - 9)
{
s->Freq += 2;
c->SummFreq += 2;
}
}
}
if (p->OrderFall == 0)
{
p->MinContext = p->MaxContext = CreateSuccessors(p, True);
if (p->MinContext == 0)
{
RestartModel(p);
return;
}
SetSuccessor(p->FoundState, REF(p->MinContext));
return;
}
*p->Text++ = p->FoundState->Symbol;
successor = REF(p->Text);
if (p->Text >= p->UnitsStart)
{
RestartModel(p);
return;
}
if (fSuccessor)
{
if (fSuccessor <= successor)
{
CTX_PTR cs = CreateSuccessors(p, False);
if (cs == NULL)
{
RestartModel(p);
return;
}
fSuccessor = REF(cs);
}
if (--p->OrderFall == 0)
{
successor = fSuccessor;
p->Text -= (p->MaxContext != p->MinContext);
}
}
else
{
SetSuccessor(p->FoundState, successor);
fSuccessor = REF(p->MinContext);
}
s0 = p->MinContext->SummFreq - (ns = p->MinContext->NumStats) - (p->FoundState->Freq - 1);
for (c = p->MaxContext; c != p->MinContext; c = SUFFIX(c))
{
unsigned ns1;
UInt32 cf, sf;
if ((ns1 = c->NumStats) != 1)
{
if ((ns1 & 1) == 0)
{
/* Expand for one UNIT */
unsigned oldNU = ns1 >> 1;
unsigned i = U2I(oldNU);
if (i != U2I(oldNU + 1))
{
void *ptr = AllocUnits(p, i + 1);
void *oldPtr;
if (!ptr)
{
RestartModel(p);
return;
}
oldPtr = STATS(c);
MyMem12Cpy(ptr, oldPtr, oldNU);
InsertNode(p, oldPtr, i);
c->Stats = STATS_REF(ptr);
}
}
c->SummFreq = (UInt16)(c->SummFreq + (2 * ns1 < ns) + 2 * ((4 * ns1 <= ns) & (c->SummFreq <= 8 * ns1)));
}
else
{
CPpmd_State *s = (CPpmd_State*)AllocUnits(p, 0);
if (!s)
{
RestartModel(p);
return;
}
*s = *ONE_STATE(c);
c->Stats = REF(s);
if (s->Freq < MAX_FREQ / 4 - 1)
s->Freq <<= 1;
else
s->Freq = MAX_FREQ - 4;
c->SummFreq = (UInt16)(s->Freq + p->InitEsc + (ns > 3));
}
cf = 2 * (UInt32)p->FoundState->Freq * (c->SummFreq + 6);
sf = (UInt32)s0 + c->SummFreq;
if (cf < 6 * sf)
{
cf = 1 + (cf > sf) + (cf >= 4 * sf);
c->SummFreq += 3;
}
else
{
cf = 4 + (cf >= 9 * sf) + (cf >= 12 * sf) + (cf >= 15 * sf);
c->SummFreq = (UInt16)(c->SummFreq + cf);
}
{
CPpmd_State *s = STATS(c) + ns1;
SetSuccessor(s, successor);
s->Symbol = p->FoundState->Symbol;
s->Freq = (Byte)cf;
c->NumStats = (UInt16)(ns1 + 1);
}
}
p->MaxContext = p->MinContext = CTX(fSuccessor);
}
static void Rescale(CPpmd7 *p)
{
unsigned i, adder, sumFreq, escFreq;
CPpmd_State *stats = STATS(p->MinContext);
CPpmd_State *s = p->FoundState;
{
CPpmd_State tmp = *s;
for (; s != stats; s--)
s[0] = s[-1];
*s = tmp;
}
escFreq = p->MinContext->SummFreq - s->Freq;
s->Freq += 4;
adder = (p->OrderFall != 0);
s->Freq = (Byte)((s->Freq + adder) >> 1);
sumFreq = s->Freq;
i = p->MinContext->NumStats - 1;
do
{
escFreq -= (++s)->Freq;
s->Freq = (Byte)((s->Freq + adder) >> 1);
sumFreq += s->Freq;
if (s[0].Freq > s[-1].Freq)
{
CPpmd_State *s1 = s;
CPpmd_State tmp = *s1;
do
s1[0] = s1[-1];
while (--s1 != stats && tmp.Freq > s1[-1].Freq);
*s1 = tmp;
}
}
while (--i);
if (s->Freq == 0)
{
unsigned numStats = p->MinContext->NumStats;
unsigned n0, n1;
do { i++; } while ((--s)->Freq == 0);
escFreq += i;
p->MinContext->NumStats = (UInt16)(p->MinContext->NumStats - i);
if (p->MinContext->NumStats == 1)
{
CPpmd_State tmp = *stats;
do
{
tmp.Freq = (Byte)(tmp.Freq - (tmp.Freq >> 1));
escFreq >>= 1;
}
while (escFreq > 1);
InsertNode(p, stats, U2I(((numStats + 1) >> 1)));
*(p->FoundState = ONE_STATE(p->MinContext)) = tmp;
return;
}
n0 = (numStats + 1) >> 1;
n1 = (p->MinContext->NumStats + 1) >> 1;
if (n0 != n1)
p->MinContext->Stats = STATS_REF(ShrinkUnits(p, stats, n0, n1));
}
p->MinContext->SummFreq = (UInt16)(sumFreq + escFreq - (escFreq >> 1));
p->FoundState = STATS(p->MinContext);
}
CPpmd_See *Ppmd7_MakeEscFreq(CPpmd7 *p, unsigned numMasked, UInt32 *escFreq)
{
CPpmd_See *see;
unsigned nonMasked = p->MinContext->NumStats - numMasked;
if (p->MinContext->NumStats != 256)
{
see = p->See[p->NS2Indx[nonMasked - 1]] +
(nonMasked < (unsigned)SUFFIX(p->MinContext)->NumStats - p->MinContext->NumStats) +
2 * (p->MinContext->SummFreq < 11 * p->MinContext->NumStats) +
4 * (numMasked > nonMasked) +
p->HiBitsFlag;
{
unsigned r = (see->Summ >> see->Shift);
see->Summ = (UInt16)(see->Summ - r);
*escFreq = r + (r == 0);
}
}
else
{
see = &p->DummySee;
*escFreq = 1;
}
return see;
}
static void NextContext(CPpmd7 *p)
{
CTX_PTR c = CTX(SUCCESSOR(p->FoundState));
if (p->OrderFall == 0 && (Byte *)c > p->Text)
p->MinContext = p->MaxContext = c;
else
UpdateModel(p);
}
void Ppmd7_Update1(CPpmd7 *p)
{
CPpmd_State *s = p->FoundState;
s->Freq += 4;
p->MinContext->SummFreq += 4;
if (s[0].Freq > s[-1].Freq)
{
SwapStates(&s[0], &s[-1]);
p->FoundState = --s;
if (s->Freq > MAX_FREQ)
Rescale(p);
}
NextContext(p);
}
void Ppmd7_Update1_0(CPpmd7 *p)
{
p->PrevSuccess = (2 * p->FoundState->Freq > p->MinContext->SummFreq);
p->RunLength += p->PrevSuccess;
p->MinContext->SummFreq += 4;
if ((p->FoundState->Freq += 4) > MAX_FREQ)
Rescale(p);
NextContext(p);
}
void Ppmd7_UpdateBin(CPpmd7 *p)
{
p->FoundState->Freq = (Byte)(p->FoundState->Freq + (p->FoundState->Freq < 128 ? 1: 0));
p->PrevSuccess = 1;
p->RunLength++;
NextContext(p);
}
void Ppmd7_Update2(CPpmd7 *p)
{
p->MinContext->SummFreq += 4;
if ((p->FoundState->Freq += 4) > MAX_FREQ)
Rescale(p);
p->RunLength = p->InitRL;
UpdateModel(p);
}

View File

@ -1,140 +0,0 @@
/* Ppmd7.h -- PPMdH compression codec
2010-03-12 : Igor Pavlov : Public domain
This code is based on PPMd var.H (2001): Dmitry Shkarin : Public domain */
/* This code supports virtual RangeDecoder and includes the implementation
of RangeCoder from 7z, instead of RangeCoder from original PPMd var.H.
If you need the compatibility with original PPMd var.H, you can use external RangeDecoder */
#ifndef __PPMD7_H
#define __PPMD7_H
#include "Ppmd.h"
EXTERN_C_BEGIN
#define PPMD7_MIN_ORDER 2
#define PPMD7_MAX_ORDER 64
#define PPMD7_MIN_MEM_SIZE (1 << 11)
#define PPMD7_MAX_MEM_SIZE (0xFFFFFFFF - 12 * 3)
struct CPpmd7_Context_;
typedef
#ifdef PPMD_32BIT
struct CPpmd7_Context_ *
#else
UInt32
#endif
CPpmd7_Context_Ref;
typedef struct CPpmd7_Context_
{
UInt16 NumStats;
UInt16 SummFreq;
CPpmd_State_Ref Stats;
CPpmd7_Context_Ref Suffix;
} CPpmd7_Context;
#define Ppmd7Context_OneState(p) ((CPpmd_State *)&(p)->SummFreq)
typedef struct
{
CPpmd7_Context *MinContext, *MaxContext;
CPpmd_State *FoundState;
unsigned OrderFall, InitEsc, PrevSuccess, MaxOrder, HiBitsFlag;
Int32 RunLength, InitRL; /* must be 32-bit at least */
UInt32 Size;
UInt32 GlueCount;
Byte *Base, *LoUnit, *HiUnit, *Text, *UnitsStart;
UInt32 AlignOffset;
Byte Indx2Units[PPMD_NUM_INDEXES];
Byte Units2Indx[128];
CPpmd_Void_Ref FreeList[PPMD_NUM_INDEXES];
Byte NS2Indx[256], NS2BSIndx[256], HB2Flag[256];
CPpmd_See DummySee, See[25][16];
UInt16 BinSumm[128][64];
} CPpmd7;
void Ppmd7_Construct(CPpmd7 *p);
Bool Ppmd7_Alloc(CPpmd7 *p, UInt32 size, ISzAlloc *alloc);
void Ppmd7_Free(CPpmd7 *p, ISzAlloc *alloc);
void Ppmd7_Init(CPpmd7 *p, unsigned maxOrder);
#define Ppmd7_WasAllocated(p) ((p)->Base != NULL)
/* ---------- Internal Functions ---------- */
extern const Byte PPMD7_kExpEscape[16];
#ifdef PPMD_32BIT
#define Ppmd7_GetPtr(p, ptr) (ptr)
#define Ppmd7_GetContext(p, ptr) (ptr)
#define Ppmd7_GetStats(p, ctx) ((ctx)->Stats)
#else
#define Ppmd7_GetPtr(p, offs) ((void *)((p)->Base + (offs)))
#define Ppmd7_GetContext(p, offs) ((CPpmd7_Context *)Ppmd7_GetPtr((p), (offs)))
#define Ppmd7_GetStats(p, ctx) ((CPpmd_State *)Ppmd7_GetPtr((p), ((ctx)->Stats)))
#endif
void Ppmd7_Update1(CPpmd7 *p);
void Ppmd7_Update1_0(CPpmd7 *p);
void Ppmd7_Update2(CPpmd7 *p);
void Ppmd7_UpdateBin(CPpmd7 *p);
#define Ppmd7_GetBinSumm(p) \
&p->BinSumm[Ppmd7Context_OneState(p->MinContext)->Freq - 1][p->PrevSuccess + \
p->NS2BSIndx[Ppmd7_GetContext(p, p->MinContext->Suffix)->NumStats - 1] + \
(p->HiBitsFlag = p->HB2Flag[p->FoundState->Symbol]) + \
2 * p->HB2Flag[Ppmd7Context_OneState(p->MinContext)->Symbol] + \
((p->RunLength >> 26) & 0x20)]
CPpmd_See *Ppmd7_MakeEscFreq(CPpmd7 *p, unsigned numMasked, UInt32 *scale);
/* ---------- Decode ---------- */
typedef struct
{
UInt32 (*GetThreshold)(void *p, UInt32 total);
void (*Decode)(void *p, UInt32 start, UInt32 size);
UInt32 (*DecodeBit)(void *p, UInt32 size0);
} IPpmd7_RangeDec;
typedef struct
{
IPpmd7_RangeDec p;
UInt32 Range;
UInt32 Code;
IByteIn *Stream;
} CPpmd7z_RangeDec;
void Ppmd7z_RangeDec_CreateVTable(CPpmd7z_RangeDec *p);
Bool Ppmd7z_RangeDec_Init(CPpmd7z_RangeDec *p);
#define Ppmd7z_RangeDec_IsFinishedOK(p) ((p)->Code == 0)
int Ppmd7_DecodeSymbol(CPpmd7 *p, IPpmd7_RangeDec *rc);
/* ---------- Encode ---------- */
typedef struct
{
UInt64 Low;
UInt32 Range;
Byte Cache;
UInt64 CacheSize;
IByteOut *Stream;
} CPpmd7z_RangeEnc;
void Ppmd7z_RangeEnc_Init(CPpmd7z_RangeEnc *p);
void Ppmd7z_RangeEnc_FlushData(CPpmd7z_RangeEnc *p);
void Ppmd7_EncodeSymbol(CPpmd7 *p, CPpmd7z_RangeEnc *rc, int symbol);
EXTERN_C_END
#endif

View File

@ -1,187 +0,0 @@
/* Ppmd7Dec.c -- PPMdH Decoder
2010-03-12 : Igor Pavlov : Public domain
This code is based on PPMd var.H (2001): Dmitry Shkarin : Public domain */
#include "Ppmd7.h"
#define kTopValue (1 << 24)
Bool Ppmd7z_RangeDec_Init(CPpmd7z_RangeDec *p)
{
unsigned i;
p->Code = 0;
p->Range = 0xFFFFFFFF;
if (p->Stream->Read((void *)p->Stream) != 0)
return False;
for (i = 0; i < 4; i++)
p->Code = (p->Code << 8) | p->Stream->Read((void *)p->Stream);
return (p->Code < 0xFFFFFFFF);
}
static UInt32 Range_GetThreshold(void *pp, UInt32 total)
{
CPpmd7z_RangeDec *p = (CPpmd7z_RangeDec *)pp;
return (p->Code) / (p->Range /= total);
}
static void Range_Normalize(CPpmd7z_RangeDec *p)
{
if (p->Range < kTopValue)
{
p->Code = (p->Code << 8) | p->Stream->Read((void *)p->Stream);
p->Range <<= 8;
if (p->Range < kTopValue)
{
p->Code = (p->Code << 8) | p->Stream->Read((void *)p->Stream);
p->Range <<= 8;
}
}
}
static void Range_Decode(void *pp, UInt32 start, UInt32 size)
{
CPpmd7z_RangeDec *p = (CPpmd7z_RangeDec *)pp;
p->Code -= start * p->Range;
p->Range *= size;
Range_Normalize(p);
}
static UInt32 Range_DecodeBit(void *pp, UInt32 size0)
{
CPpmd7z_RangeDec *p = (CPpmd7z_RangeDec *)pp;
UInt32 newBound = (p->Range >> 14) * size0;
UInt32 symbol;
if (p->Code < newBound)
{
symbol = 0;
p->Range = newBound;
}
else
{
symbol = 1;
p->Code -= newBound;
p->Range -= newBound;
}
Range_Normalize(p);
return symbol;
}
void Ppmd7z_RangeDec_CreateVTable(CPpmd7z_RangeDec *p)
{
p->p.GetThreshold = Range_GetThreshold;
p->p.Decode = Range_Decode;
p->p.DecodeBit = Range_DecodeBit;
}
#define MASK(sym) ((signed char *)charMask)[sym]
int Ppmd7_DecodeSymbol(CPpmd7 *p, IPpmd7_RangeDec *rc)
{
size_t charMask[256 / sizeof(size_t)];
if (p->MinContext->NumStats != 1)
{
CPpmd_State *s = Ppmd7_GetStats(p, p->MinContext);
unsigned i;
UInt32 count, hiCnt;
if ((count = rc->GetThreshold(rc, p->MinContext->SummFreq)) < (hiCnt = s->Freq))
{
Byte symbol;
rc->Decode(rc, 0, s->Freq);
p->FoundState = s;
symbol = s->Symbol;
Ppmd7_Update1_0(p);
return symbol;
}
p->PrevSuccess = 0;
i = p->MinContext->NumStats - 1;
do
{
if ((hiCnt += (++s)->Freq) > count)
{
Byte symbol;
rc->Decode(rc, hiCnt - s->Freq, s->Freq);
p->FoundState = s;
symbol = s->Symbol;
Ppmd7_Update1(p);
return symbol;
}
}
while (--i);
if (count >= p->MinContext->SummFreq)
return -2;
p->HiBitsFlag = p->HB2Flag[p->FoundState->Symbol];
rc->Decode(rc, hiCnt, p->MinContext->SummFreq - hiCnt);
PPMD_SetAllBitsIn256Bytes(charMask);
MASK(s->Symbol) = 0;
i = p->MinContext->NumStats - 1;
do { MASK((--s)->Symbol) = 0; } while (--i);
}
else
{
UInt16 *prob = Ppmd7_GetBinSumm(p);
if (rc->DecodeBit(rc, *prob) == 0)
{
Byte symbol;
*prob = (UInt16)PPMD_UPDATE_PROB_0(*prob);
symbol = (p->FoundState = Ppmd7Context_OneState(p->MinContext))->Symbol;
Ppmd7_UpdateBin(p);
return symbol;
}
*prob = (UInt16)PPMD_UPDATE_PROB_1(*prob);
p->InitEsc = PPMD7_kExpEscape[*prob >> 10];
PPMD_SetAllBitsIn256Bytes(charMask);
MASK(Ppmd7Context_OneState(p->MinContext)->Symbol) = 0;
p->PrevSuccess = 0;
}
for (;;)
{
CPpmd_State *ps[256], *s;
UInt32 freqSum, count, hiCnt;
CPpmd_See *see;
unsigned i, num, numMasked = p->MinContext->NumStats;
do
{
p->OrderFall++;
if (!p->MinContext->Suffix)
return -1;
p->MinContext = Ppmd7_GetContext(p, p->MinContext->Suffix);
}
while (p->MinContext->NumStats == numMasked);
hiCnt = 0;
s = Ppmd7_GetStats(p, p->MinContext);
i = 0;
num = p->MinContext->NumStats - numMasked;
do
{
int k = (int)(MASK(s->Symbol));
hiCnt += (s->Freq & k);
ps[i] = s++;
i -= k;
}
while (i != num);
see = Ppmd7_MakeEscFreq(p, numMasked, &freqSum);
freqSum += hiCnt;
count = rc->GetThreshold(rc, freqSum);
if (count < hiCnt)
{
Byte symbol;
CPpmd_State **pps = ps;
for (hiCnt = 0; (hiCnt += (*pps)->Freq) <= count; pps++);
s = *pps;
rc->Decode(rc, hiCnt - s->Freq, s->Freq);
Ppmd_See_Update(see);
p->FoundState = s;
symbol = s->Symbol;
Ppmd7_Update2(p);
return symbol;
}
if (count >= freqSum)
return -2;
rc->Decode(rc, hiCnt, freqSum - hiCnt);
see->Summ = (UInt16)(see->Summ + freqSum);
do { MASK(ps[--i]->Symbol) = 0; } while (i != 0);
}
}